Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-28T14:14:18.827Z Has data issue: false hasContentIssue false

Organics in the samples returned from comet 81P/Wild 2 by the Stardust Spacecraft

Published online by Cambridge University Press:  01 February 2008

Scott A. Sandford*
Affiliation:
Astrophysics Branch, NASA-Ames Research Center, Mail Stop 245-6, Moffett Field, California, USA email: Scott.A.Sandford@nasa.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Stardust Mission collected samples from Comet 81P/Wild 2 on 2 Jan 2004 and returned these samples to Earth on 15 Jan 2006. After recovery, a six month preliminary examination was done on a portion of the samples. Studies of the organics in the samples were made by the Organics Preliminary Examination Team (PET) - a worldwide group of over 55 scientists. This paper provides a brief overview of the findings of the Organics PET. Organics in the samples were studied using a multitude of analytical techniques including spatial determination of C and heteroatom elemental abundances (STXM), functional group identification (micro-FTIR/Raman, C,N,O-XANES), and specific molecular identification of certain classes of organics (HPLC-LIF, L2MS, TOF-SIMS). Analyses were also made of spacecraft components and environmental samples collected near the recovered returned capsule to assess contamination issues. The distribution of organics (abundance, functionality, and relative elemental abundances of C,N,O) is heterogeneous both within and between particles. They are an unequilibrated reservoir that experienced little parent body processing after incorporation into the comet. Some organics look like those seen in IDPs (and to a lesser extent, meteorites), while new aromatic-poor and highly labile organics, not seen in meteoritic materials, are also present. The organics are O,N-rich compared to meteoritic organics. Some of the organics have an interstellar heritage, as evidenced by D and 15N enrichments.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

A'Hearn, M. F., Belton, M. J. S., Delamere, W. A., et al. 2005, Science, 310, 258.CrossRefGoogle Scholar
Aléon, J. & Robert, F. 2004, Icarus, 167, 424.CrossRefGoogle Scholar
Bajt, S., Sandford, S. A., Flynn, G. J., et al. 2008, Meteorit. Planet. Sci, in press.Google Scholar
Bernstein, M., Dworkin, J., Sandford, S., Cooper, G., & Allamandola, L. 2002, Nature, 416, 401.CrossRefGoogle Scholar
Bernstein, M., Sandford, S., Allamandola, L., Chang, S., & Scharberg, M. 1995, Astrophys. J., 454, 327.CrossRefGoogle Scholar
Bernstein, M., Sandford, S., Allamandola, L., Gillette, J., Clemett, S., & Zare, R. 1999, Science, 283, 1135.CrossRefGoogle Scholar
Bockelée-Morvan, D., Crovisier, J., Mumma, M., & Weaver, H. 2004, Comets II, (Tucson: Univ. Ariz. Press), p. 391.CrossRefGoogle Scholar
Bottke, W.F. Jr., Cellino, A., Paolicchi, P., & Binel, R. P., eds. 2002, Asteroids III, (Tucson: Univ. Ariz. Press)CrossRefGoogle Scholar
Bradley, J. P., Sandford, S. A., & Walker, R. M. 1988, in: Kerridge, & Matthews, (eds.), Meteorites and the Early Solar System., (Tucson: Univ. Ariz. Press), p. 861.Google Scholar
Brownlee, D., Tsou, P., Anderson, J., et al. 2003, J. Geophys. Res., 108, 8111.Google Scholar
Brownlee, D. E., Hörz, F., Newburn, R. L., et al. 2004, Science, 304, 764.CrossRefGoogle Scholar
Brownlee, D., Tsou, P., Aleon, J., Alexander, C. M. O., Araki, T., et al. 2006, Science, 314, 1711.CrossRefGoogle Scholar
Busemann, H., Young, A. F., Alexander, C. M. O., Hoppe, P., Mukhopadhyay, S., & Nittler, L. R. 2006, Science, 312, 727.CrossRefGoogle Scholar
Clemett, S., Maechling, C., Zare, R., Swan, P., & Walker, R. 1993, Science, 262, 721.CrossRefGoogle Scholar
Clemett, S., Spencer, M., Sandford, S., McKay, D., & Zare, R. 2008, Meteorit. Planet. Sci., in press.Google Scholar
Cody, G., Ade, H., Alexander, C., et al. 2008, Meteorit. Planet. Sci, in press.Google Scholar
Cottin, H., Szopa, C., & Moore, M. H. 2001, Astrophys. J., 561, L139.CrossRefGoogle Scholar
Dworkin, J., Deamer, D., Sandford, S., & Allamandola, L. 2001, Proc. Nat. Acad. Sci. USA, 98, 815.CrossRefGoogle Scholar
Ehrenfreund, P., Charnley, S., & Wooden, D. 2004, Comets II, (Tucson: Univ. Ariz. Press), p. 115.CrossRefGoogle Scholar
Festou, M. C., Keller, H. U., & Weaver, H. A., eds. 2004, Comets II, (Tucson: Univ. Ariz. Press.)CrossRefGoogle Scholar
Flynn, G. J., Bleuet, P., Borg, J., Bradley, J. P., Brenker, F. E., et al. 2006, Science, 314, 1731.CrossRefGoogle Scholar
Glavin, D. P., Dworkin, J. P., & Sandford, S. A. 2008, Meteorit. Planet. Sci, in press.Google Scholar
Hörz, F., Bastien, R., Borg, J., Bradley, J. P., Bridges, J. C., et al. 2006, Science, 314, 1716.CrossRefGoogle Scholar
Keller, L. P., Bajt, S., Baratta, G. A., Borg, J., Bradley, J. P., et al. 2006, Science, 314, 1728.CrossRefGoogle Scholar
Kerridge, J. & Matthews, M., eds. 1988, Meteorites and the Early Solar System., (Tucson: Univ. Ariz. Press)Google Scholar
Lauretta, D. S. & McSween, H. Y. Jr., eds. 2006, Meteorites and the Early Solar System II, (Tucson: Univ. Ariz. Press)Google Scholar
Mannings, V., Boss, A. & Russell, S., eds. 2000, Protostars and Planets IV, (Tucson: Univ. Ariz. Press)CrossRefGoogle Scholar
Matrajt, G., Ito, M., Wirick, S., et al. 2008, Meteorit. Planet. Sci, in press.Google Scholar
McKeegan, K. D., Aléon, J., Bradley, J., et al. 2006, Science, 314, 1724.CrossRefGoogle Scholar
Messenger, S. 2000, Nature, 404, 968.CrossRefGoogle Scholar
Pendleton, Y. J & Allamandola, L. J. 2002, Astrophys. J. Suppl. Ser., 138, 75.CrossRefGoogle Scholar
Reinhard, R. 1986, Nature, 231, 313.CrossRefGoogle Scholar
Rotundi, A., Baratta, G. A., Borg, J., et al. 2008, Meteorit. Planet. Sci, in press.Google Scholar
Sagdeev, R. Z., Blamont, J., Galeev, A. A., et al. 1986, Nature, 231, 259.CrossRefGoogle Scholar
Sandford, S. A. 2008, Annu. Rev. Anal. Chem., 1, 18.1.CrossRefGoogle Scholar
Sandford, S. A., Bernstein, M. P., & Dworkin, J. P. 2001, Meteorit. Planet. Sci., 36, 1117.CrossRefGoogle Scholar
Sandford, S. A. & Brownlee, D. E. 2007, Science, 317, 1680.CrossRefGoogle Scholar
Sandford, S. A., Aléon, J., Alexander, C. M. O., Araki, T., Bajt, S., et al. 2006, Science, 314, 1720.CrossRefGoogle Scholar
Schutte, W. A., Allamandola, L. J., & Sandford, S. A. 1993, Icarus, 104, 118.CrossRefGoogle Scholar
Sekanina, Z., Brownlee, D., Economou, T., Tuzzolino, A., & Green, S. 2004, Science, 304, 769.CrossRefGoogle Scholar
Spencer, M., Clemett, S., Sandford, S., McKay, D., & Zare, R. 2008, Meteorit. Planet. Sci., in press.Google Scholar
Spencer, M. K. & Zare, R. N. 2007, Science, 317, 1680.CrossRefGoogle Scholar
Stephan, T., Flynn, G., Sandford, S., & Zolensky, M. 2008a, Meteorit. Planet. Sci, in press.Google Scholar
Stephan, T., Rost, D., Vicenzi, E., et al. 2008b, Meteorit. Planet. Sci, in press.Google Scholar
Tsou, P., Brownlee, D., Sandford, S., Hörz, F., & Zolensky, M. 2003, J. Geophys. Res., 108, 8113.Google Scholar
Tuzzolino, A. J., Economou, T. E., Clark, B. C., et al. 2004, Science, 304, 1776.CrossRefGoogle Scholar
Zolensky, M. E., Zega, T. J., Yano, H., et al. 2006, Science, 314, 1735.CrossRefGoogle Scholar