Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-23T12:54:20.485Z Has data issue: false hasContentIssue false

The Role of Massive Stars in Galactic Chemical Evolution

Published online by Cambridge University Press:  01 December 2007

Francesca Matteucci*
Affiliation:
Dipartimento di Astronomia, Osservatorio Astronomica di Trieste (INAF)Universita di Trieste, Via G.B. Tiepolo, 11 I-34124 Trieste, Italy email: matteucci@oats.inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I will review the role of massive stars in galactic evolution both from the nucleosynthesis and energetics point of view. In particular, I will highlight some important observational facts explained by means of massive stars in galaxies of different morphological type: the Milky Way, ellipticals and dwarf spheroidals. I will describe first the time-delay model and its interpretation in terms of abundance ratios in galaxies, then I will discuss the importance of mass loss in massive stars to reproduce the data in the Galactic bulge and disk. I will discuss also how massive stars can be important producers of primary nitrogen if rotation in stellar models is taken into account. Concerning elliptical galaxies, I will show that to reproduce the observed [Mg/Fe] versus Mass relation in these galaxies it is necessary to assume a more important role of massive stars in more massive galaxies and that this can be achieved by means of downsizing in star formation. I will discuss how massive stars are responsible in triggering galactic winds both in ellipticals and dwarf spheroidals. These latter systems show a low overabundance of α-elements relative to Fe with respect to Galactic stars of the same [Fe/H]: this is interpreted as due to a slow star formation coupled with very efficient galactic winds. Finally, I will show a comparison between the predicted Type Ib/c rates in galaxies and the observed GRB rate and how we can impose constraints on the mechanism of galaxy formation by studying the GRB rate at high redshift.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Ballero, S., Matteucci, F., Origlia, l. & Rich, R. M., 2007, A&A, 467, 123Google Scholar
Baron, E., 1992, MNRAS, 255, 267CrossRefGoogle Scholar
Bensby, T., Feltzing, S., Lundstroem, I., & Ilyn, I., 2005, A&A, 185, 203Google Scholar
Bissaldi, E., Calura, F., Matteucci, F., et al. 2007, A&A, 471, 585Google Scholar
Boissier, S. & Prantzos, N., 1999, MNRAS, 307, 857Google Scholar
Calura, F., 2004, PhD Thesis, Trieste UniversityGoogle Scholar
Cescutti, G., Matteucci, F., François, P. & Chiappini, C., 2007, A&A, 462, 943Google Scholar
Chiappini, C., Matteucci, F., & Gratton, R., 1997, ApJ, 477, 765CrossRefGoogle Scholar
Chiappini, C., Hirschi, R., Meynet, G., et al. 2006, A&A, 449, L27Google Scholar
Chiappini, C., Matteucci, F. & Romano, D., 2001, ApJ, 554, 1044Google Scholar
Della Valle, M., 2005, in Il Nuovo Cimento C, 28, 563Google Scholar
Granato, G. L., Silva, L., Monaco, P., et al. 2001, MNRAS, 324, 757CrossRefGoogle Scholar
Greggio, L. & Renzini, A., 1983, Mem. SaIt, 54, 311Google Scholar
Hirschi, R., 2007, A&A, 461, 571Google Scholar
Lanfranchi, G. & Matteucci, F. 2003, MNRAS, 345, 71Google Scholar
Lanfranchi, G. & Matteucci, F., 2004, MNRAS, 351, 1338CrossRefGoogle Scholar
Lanfranchi, G., Matteucci, F. & Cescutti, G., 2006, A&A, 453, 67Google Scholar
Maeder, A., 1992, A& A, 264, 105Google Scholar
Mannucci, F., Della Valle, M., Panagia, N., et al. 2005, A&A 433, 807Google Scholar
Mannucci, F., Della Valle, M. & Panagia, N., 2006, MNRAS, 370, 773CrossRefGoogle Scholar
Matteucci, F. & Brocato, E., 1990, ApJ, 365, 539CrossRefGoogle Scholar
Matteucci, F., 2001, The Chemical Evolution of the Galaxy (Dordrecht: Kluwer)Google Scholar
Matteucci, F., 2003, Ap&SS, 284, 539Google Scholar
Matteucci, F., 1994, A&A, 288, 57Google Scholar
Matteucci, F. & Greggio, L., 1986, A&A, 154, 279Google Scholar
McWilliam, A., Matteucci, F., Ballero, S., et al. 2008, AJ submitted (arXiv:0708.4026)Google Scholar
Meynet, G. & Maeder, A., 2002, A&A, 390, 561Google Scholar
Nomoto, K., Tominaga, N., Umeda, H., et al. 2006, Nucl. Phys. A777, 424CrossRefGoogle Scholar
Pipino, A. & Matteucci, F., 2004, MNRAS, 347, 968CrossRefGoogle Scholar
Renzini, A. & Voli, M., 1981, A&A, 94, 175Google Scholar
Salpeter, E. E., 1955, ApJ, 121, 161CrossRefGoogle Scholar
Scalo, J. M.Fund. Cosmic Phys. 11, 1Google Scholar
Schmidt, M., 1959, ApJ, 129, 243CrossRefGoogle Scholar
Shetrone, M. D., Coté, P. & Sargent, W. L. W., 2001, ApJ, 548, 592Google Scholar
Thomas, D., Maraston, C., Bender, R., 2002, in: Schielicke, R. E. (ed.), JENAM 2001: Astronomy with Large Telescopes, (Schielicke: Wiley), Reviews in Modern Astronomy, 15, 219Google Scholar
Tinsley, B. M, 1979, ApJ, 229, 1046CrossRefGoogle Scholar
Tinsley, B. M., 1980, Fund. Cosmic Phys., 5, 287Google Scholar
Woosley, S. E. & Weaver, T. A., 1995, ApJS, 101, 181CrossRefGoogle Scholar