Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T10:53:35.073Z Has data issue: false hasContentIssue false

The Evolution of the Circumstellar and Interstellar Medium Around Massive Stars

Published online by Cambridge University Press:  01 December 2007

S. Jane Arthur*
Affiliation:
Centro de Radioastronomía y Astrofísica, Universidad Nacional Autónoma de México, Apartado Postal 3-72, 58090 Morelia, México email: j.arthur@astrosmo.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Throughout their lives massive stars modify their environment through their ionizing photons and strong stellar winds. Here, I present coupled radiation-hydrodynamic calculations of the evolution of the bubbles and nebulae surrounding massive stars. The evolution is followed from the main sequence through the Wolf-Rayet stage and shows that structures are formed in the ISM out to some tens of parsecs radius. Closer to the star, instabilities lead to the breakup of swept-up wind shells. The photoevaporated flows from the resulting clumps interact with the stellar wind from the central star, which leads to the production of soft X-rays. I examine the consequences for the different observable structures at all time and size scales and evaluate the impact that the massive star has on its environment.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Arthur, S. J., & Hoare, M. G. 2006, ApJS, 165, 283CrossRefGoogle Scholar
Chevalier, R. A., & Clegg, A. W. 1985, Nature, 317, 44CrossRefGoogle Scholar
Cooper, R. L., Guerrero, M. A., Chu, Y.-H., et al. 2004, ApJ, 605, 751CrossRefGoogle Scholar
Dunne, B. C., Chu, Y.-H., Chen, C.-H. R., et al. 2003, ApJ, 590, 306CrossRefGoogle Scholar
Dyson, J. E., & de Vries, J. 1972, A&A, 20, 223Google Scholar
Freyer, T., Hensler, G., & Yorke, H. W. 2003, ApJ, 594, 888CrossRefGoogle Scholar
Freyer, T., Hensler, G., & Yorke, H. W. 2006, ApJ, 638, 262CrossRefGoogle Scholar
García-Segura, G. & Franco, J. 1996, ApJ, 469, 171CrossRefGoogle Scholar
García-Segura, G., Mac Low, M.-M., & Langer, N. 1996a A&A, 305, 229Google Scholar
García-Segura, G., Langer, N., & Mac Low, M.-M. 1996b A&A, 316, 133Google Scholar
Güdel, M., Briggs, K. R., Montmerle, T., et al. 2008, Sci, 319, 309CrossRefGoogle Scholar
Kahn, F. D. 1954, Bull. Astron. Inst. Netherlands, 12, 187Google Scholar
Leitherer, C., et al. 1999, ApJS, 123, 3CrossRefGoogle Scholar
Mellema, G., Arthur, S. J., Henney, W. J., Iliev, I. T., & Shapiro, P. R. 2006, ApJ, 647, 397CrossRefGoogle Scholar
Meynet, G., & Maeder, A. 2003, A&A, 404, 975Google Scholar
Nazé, Y., Chu, Y.-H., Points, S. D., et al. 2001, AJ, 122, 921CrossRefGoogle Scholar
Smith, L. J., Norris, R. P. F., & Crowther, P. A. 2002, MNRAS, 337, 1309CrossRefGoogle Scholar
Strömgren, B. 1939, ApJ, 89, 526CrossRefGoogle Scholar
Townsley, L. K., Feigelson, E. D., Montmerle, , et al. 2003, ApJ, 593, 874CrossRefGoogle Scholar
Vasquez, J., Cappa, C., & McClure-Griffiths, N. M. 2005, MNRAS, 362, 681CrossRefGoogle Scholar
Vázquez-Semadeni, E., Kim, J., Shadmehri, M., & Ballesteros-Paredes, J. 2005, ApJ, 618, 344CrossRefGoogle Scholar
Weaver, R., McCray, R., Castor, J., et al. 1977, ApJ, 218, 377CrossRefGoogle Scholar