Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T01:37:17.770Z Has data issue: false hasContentIssue false

Extragalactic Stellar Astronomy with the Brightest Stars in the Universe

Published online by Cambridge University Press:  01 December 2007

Rolf Kudritzki
Affiliation:
Institute for Astronomy, University of Hawaii2680 Woodlawn Drive, Honolulu, HI 96822, USA email: kud@ifa.hawaii.edu, urbaneja@ifa.hawaii.edu, bresolin@ifa.hawaii.edu
Miguel A. Urbaneja
Affiliation:
Institute for Astronomy, University of Hawaii2680 Woodlawn Drive, Honolulu, HI 96822, USA email: kud@ifa.hawaii.edu, urbaneja@ifa.hawaii.edu, bresolin@ifa.hawaii.edu
Fabio Bresolin
Affiliation:
Institute for Astronomy, University of Hawaii2680 Woodlawn Drive, Honolulu, HI 96822, USA email: kud@ifa.hawaii.edu, urbaneja@ifa.hawaii.edu, bresolin@ifa.hawaii.edu
Norbert Przybilla
Affiliation:
Dr. Remeis-Sternwarte Bamberg, Erlangen UniversitySternwartstr. 7, D-96049 Bamberg, Germany email: przybilla@sternwarte.uni-erlangen.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A supergiants are objects in transition from the blue to the red (and vice versa) in the uppermost HRD. They are the intrinsically brightest “normal” stars at visual light with absolute visual magnitudes up to −9. They are ideal to study young stellar populations in galaxies beyond the Local Group to determine chemical composition and evolution, interstellar extinction, reddening laws and distances. We discuss most recent results on the quantitative spectral analysis of such objects in galaxies beyond the Local Group based on medium and low resolution spectra obtained with the ESO VLT and Keck. We describe the analysis method including the determination of metallicity and metallicity gradients. A new method to measure accurate extragalactic distances based on the stellar gravities and effective temperatures is presented, the flux weighted gravity – luminosity relationship (FGLR). The FGLR is a purely spectroscopic method, which overcomes the uncertainties introduced by interstellar extinction and variations of metallicity, which plague all photometric stellar distance determination methods. We discuss the perspectives of future work using the giant ground-based telescopes of the next generation such as the TMT, the GMT and the E-ELT.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Allende Prieto, C., Lambert, D. L., & Asplund, M. 2001, ApJ, 556, L63CrossRefGoogle Scholar
Aufdenberg, J. P., Hauschildt, P. H., Baron, E. et al. 2002, ApJ, 570, 344Google Scholar
Bresolin, F., Kudritzki, R.-P., Méndez, R. H., & Przybilla, N. 2001, ApJ, 548, L159CrossRefGoogle Scholar
Bresolin, F., Gieren, W., Kudritzki, R.-P., et al. 2002, ApJ, 567, 277CrossRefGoogle Scholar
Bresolin, F., Pietrzyński, G., Gieren, W., et al. 2004, ApJ, 600, 182CrossRefGoogle Scholar
Bresolin, F., Pietrzyński, G., Gieren, W. & Kudritzki, R. P. 2005, ApJ, 634, 1020Google Scholar
Deharveng, L., Caplan, J., Lequeux, J., et al. 1988, A&AS, 73, 407Google Scholar
Denicolo, G., Terlevich, R. & Terlevich, E. 2002, MNRAS, 330, 69CrossRefGoogle Scholar
Dopita, M. A., Evans, I. N. 1986, ApJ, 307, 431Google Scholar
Evans, C. J. & Howarth, I. D. 2003, MNRAS, 345, 1223CrossRefGoogle Scholar
Freedman, et al. 2001, ApJ, 553, 47CrossRefGoogle Scholar
Gieren, W., Pietrzyński, G., Soszynski, I., et al. 2005, ApJ, 628, 695CrossRefGoogle Scholar
Gieren, W. et al. 2005, ESO Messenger, 121, 23Google Scholar
Groth, H. G. 1961, ZAp, 51, 231Google Scholar
Kaufer, A., Venn, K. A., Tolstoy, E., et al. 2004, AJ, 127, 2723Google Scholar
Kobulnicky, H. A., Kennicutt, R. C. & Pizagno, J. L. 1999, ApJ, 514, 544Google Scholar
Kudritzki, R.-P. 1973, A&A, 28, 103Google Scholar
Kudritzki, R.-P., 1998, in: Aparicio, A., Herrero, A. & Sanchez, F. (eds.), Stellar Physics for the Local Group (Cambridge: CUP) 149Google Scholar
Kudritzki, R.-P., Bresolin, F., & Przybilla, N. 2003, ApJ, 582, L83Google Scholar
Kudritzki, R.-P., Lennon, D. J. & Puls, J. 1995, in: Welsh, J. R. & Danziger, I. J. (eds.), Science with VLT, (Berlin: Springer-Verlag), 246Google Scholar
Kudritzki, R.-P., Puls, J., Lennon, D. J. et al. 1999, A&A, 350, 970Google Scholar
Kudritzki, R.-P., Urbaneja, M. A., Bresolin, F., et al. 2008, ApJ, in press (astro-ph/0803.3654)Google Scholar
McCarthy, J. K., Lennon, D. J., Venn, K. A., et al. 1995, ApJ, 455, L135CrossRefGoogle Scholar
McCarthy, J. K., Kudritzki, R. P., Lennon, D. J., et al. 1997, ApJ, 482, 757CrossRefGoogle Scholar
Meynet, , & Maeder, A. 2005, A&A, 429, 581Google Scholar
Pettini, M. & Pagel, B. E.J. 2004, MNRAS, 348, L59Google Scholar
Pilyugin, L. S. 2001, A&A, 369, 594Google Scholar
Przybilla, N., Butler, K., Becker, S. R., et al. 2000, A&A, 359, 1085Google Scholar
Przybilla, N., Butler, K., Becker, S. R., & Kudritzki, R. P. 2001a A&A, 369, 1009Google Scholar
Przybilla, N., Butler, K. & Kudritzki, R. P. 2001b, A&A, 379, 936Google Scholar
Przybilla, N. & Butler, K. 2001, A&A, 379, 955Google Scholar
Przybilla, N. 2002, thesis, Fakultaet fuer Physik, Ludwig-Maximilian University, MunichGoogle Scholar
Przybilla, N., Butler, K., Becker, S. R., & Kudritzki, R. P. 2006, A&A, 445, 1099Google Scholar
Przybilla, N., Butler, K., & Kudritzki, R. P. 2008, in: Israelian, G. & Meynet, G. (eds.), The Metal-Rich Universe, (Cambridge: CUP), in press (astro-ph/0611044)Google Scholar
Schiller, F. & Przybilla, N. 2008, A&A, 479, 849Google Scholar
Urbaneja, M. A., Herrero, A. J., Bresolin, F., et al. 2005, ApJ, 622, 877Google Scholar
Venn, K. A. 1995a, ApJS, 99, 659CrossRefGoogle Scholar
Venn, K. A. 1995a, ApJ, 449, 839CrossRefGoogle Scholar
Venn, K. A. 1999, ApJ, 518, 405CrossRefGoogle Scholar
Venn, K. A., Lennon, D. J., Kaufer, A., et al. 2001, 547, 765CrossRefGoogle Scholar
Venn, K. A., McCarthy, J. K., Lennon, D. J., et al. 2000, ApJ, 541, 610CrossRefGoogle Scholar
Venn, K. A., Tolstoy, E., Kaufer, A. et al. 2003, AJ, 126, 1326Google Scholar
Wolf, B. 1971, A&A, 10, 383Google Scholar
Wolf, B. 1972, A&A, 20, 275Google Scholar
Wolf, B. 1973, A&A, 28, 335Google Scholar
Zaritski, D., Kennicutt, R. C. & Huchra, J. P. 1994, ApJ, 420, 87CrossRefGoogle Scholar