Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-18T16:54:22.551Z Has data issue: false hasContentIssue false

Episodic Mass Loss and Pre-SN Circumstellar Envelopes

Published online by Cambridge University Press:  01 December 2007

Nathan Smith*
Affiliation:
Astronomy Department, University of California, Berkeley, CA 94720, USA email: nathans@astro.berkeley.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

I discuss observational clues concerning episodic mass-loss properties of massive stars in the time before the final supernova explosion. In particular, I will focus on the mounting evidence that LBVs and related stars are candidates for supernova progenitors, even though current paradigms place them at the end of core-H burning. Namely, conditions in the immediate circumstellar environment within a few 102 AU of Type IIn supernovae require very high progenitor mass-loss rates. Those rates are so high that the only known stars that come close are LBVs during rare giant eruptions. I will highlight evidence from observations of some recent extraordinary supernovae suggesting that explosive or episodic mass loss (a.k.a. LBV eruptions like the 19th century eruption of Eta Car) occur in the 5-10 years immediately preceding the SN. Finally, I will discuss some implications for stellar evolution from these SNe, the most important of which is the observational fact that the most massive stars can indeed make it to the ends of their lives with substantial H envelopes intact, even at Solar metallicity.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Cappellaro, E., Turatto, M., Tsvetkov, D. Yu., et al. 1997, A&A, 322, 431Google Scholar
Foley, R. J., Smith, N., & Ganeshalingam, M., al. 2007, ApJ, 657, L105CrossRefGoogle Scholar
Gal-Yam, A., Leonard, D. C., Fox, D. B., et al. 2007, ApJ, 656, 372CrossRefGoogle Scholar
Kotak, R. & Vink, J. S. 2006, A&A, 460, L5Google Scholar
Massey, P., McNeill, R. T., Olsen, K. A. G., et al. 2007, AJ, 134, 2474CrossRefGoogle Scholar
Ofek, E. O., Cameron, P. B., Kasliwal, M. M., et al. 2007, ApJ, 659, L13CrossRefGoogle Scholar
Pastorello, A., Mazzali, P. A., Pignata, G., et al. 2007, Nature, 447, 829CrossRefGoogle Scholar
Prestwich, A. H., Kilgard, R., Crowther, P. A., et al. 2007, ApJ, 669, L21CrossRefGoogle Scholar
Ryder, S. D., Sadler, E. M., Subrahmanyan, R., et al. 2004, MNRAS, 349, 1093CrossRefGoogle Scholar
Schwarz, D. H. & Pringle, J. E. 1996, MNRAS, 282, 1018CrossRefGoogle Scholar
Silverman, J. M. & Filippenko, A. V. 2008, ApJ, 678, L17CrossRefGoogle Scholar
Smith, N. 2007, AJ, 133, 1034CrossRefGoogle Scholar
Smith, N. & Owocki, S. P. 2006, ApJ, 645, L45CrossRefGoogle Scholar
Smith, N. & McCray, R. 2007, ApJ, 671, L17CrossRefGoogle Scholar
Smith, N. & Conti, P. S. 2008, ApJ, 679, 1467CrossRefGoogle Scholar
Smith, N., Vink, J., & de Koter, A. 2004, ApJ, 615, 475CrossRefGoogle Scholar
Smith, N., Bally, J., & Walawender, J. 2007a AJ, 134, 846CrossRefGoogle Scholar
Smith, N., Li, W., Foley, R. J., et al. 2007b ApJ, 666, 1116CrossRefGoogle Scholar
Smith, N., Foley, R. J., & Filippenko, A. V. 2008, ApJ, 680, 568CrossRefGoogle Scholar
Smith, N. et al. 2008b, ApJ, in press (astro-ph/0804.0042)Google Scholar
Soderberg, A., Chevalier, R. A., Kulkarni, S. R., & Frail, D. A. 2006, ApJ, 651, 1005CrossRefGoogle Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390CrossRefGoogle Scholar