Hostname: page-component-7c8c6479df-24hb2 Total loading time: 0 Render date: 2024-03-27T23:18:22.940Z Has data issue: false hasContentIssue false

Fully Self-Consistent N-body Simulation of Star Cluster in the Galactic Center

Published online by Cambridge University Press:  01 September 2007

M. Fujii
Affiliation:
Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 email: fujii@cfca.jp Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 email: makino@cfca.jp
M. Iwasawa
Affiliation:
Department of General System Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 email: iwasawa@cfca.jp, funato@artcompsci.org Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 email: makino@cfca.jp
Y. Funato
Affiliation:
Department of General System Studies, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 email: iwasawa@cfca.jp, funato@artcompsci.org
J. Makino
Affiliation:
Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 email: makino@cfca.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We have developed a new tree-direct hybrid algorithm, “Bridge”. It can simulate small scale systems embedded within large-N systems fully self-consistently. Using this algorithm, we have performed full N-body simulations of star clusters near the Galactic center (GC) and compared the orbital evolutions of the star cluster with those obtained by “traditional” simulations, in which the orbital evolution of the star clusters is calculated from the dynamical friction formula. We found that the inspiral timescale of the star cluster is shorter than that obtained with traditional simulations. Moreover, we investigated the eccentricities of particles escaped from the star cluster. Eccentric orbit of the star cluster can naturally explain the high eccentricities of the observed stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Barnes, J. & Hut, P. 1986, Nature 324, 446CrossRefGoogle Scholar
Chandrasekhar, S. 1943, ApJ 97, 255CrossRefGoogle Scholar
Fujii, M., Funato, Y., & Makino, J. 2006. PASJ 58, 743CrossRefGoogle Scholar
Fujii, M., Iwasawa, M., Funato, Y., & Makino, J. 2007a, PASJ accepted, arXiv: 0706.2059Google Scholar
Fujii, M., Iwasawa, M., Funato, Y., & Makino, J. 2007b, arXiv: 0708.3719Google Scholar
Gerhard, O. 2001, ApJ 546, L39CrossRefGoogle Scholar
Gürkan, M. A. & Rasio, F. A. 2005, ApJ 628, 236CrossRefGoogle Scholar
Kinoshita, H., Yoshida, H. & Nakai, H. 1991, Cel. Mech. and Dyn. Astr. 50, 59CrossRefGoogle Scholar
Krabbe, A. et al. 1995, ApJ 447, L95CrossRefGoogle Scholar
Lu, J.R. et al. 2006, JPhCS 54, 279Google Scholar
Makino, J., Fukushige, T., Koga, M., & Namura, K. 2003, PASJ 55, 1163CrossRefGoogle Scholar
Paumard, T. et al. 2006 ApJ 643, 1011CrossRefGoogle Scholar
Portegies Zwart, S. F., McMillan, S. L. W., & Gerhard, O. 2003, ApJ 593, 352CrossRefGoogle Scholar
Salpeter, E. E. 1955, ApJ 121, 161CrossRefGoogle Scholar
Wisdom, J. & Holman, M. 1991, AJ 102, 152CrossRefGoogle Scholar