Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T19:09:50.071Z Has data issue: false hasContentIssue false

Multiple Stellar Populations in Globular Clusters: Collection of Information from the Horizontal Branch

Published online by Cambridge University Press:  01 September 2007

Francesca D'Antona
Affiliation:
INAF - Osservatorio Astronomico di Roma, via Frascati 33, I-00040 Monte Porzio, Italy email: dantona@oa-roma.inaf.it
Vittoria Caloi
Affiliation:
INAF - IASF, via Fosso del Cavaliere, I-00133 Roma, Italy email: vittoria.caloi@iasf-roma.inaf.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The majority of the inhomogeneities in the chemical composition of Globular Cluster (GC) stars appear due to primordial enrichment by hot-CNO cycled material processed in stars belonging to a first stellar generation. Either massive AGB envelopes subject to hot bottom burning, or the envelopes of massive fastly rotating stars could be the progenitors. In both cases, the stars showing chemical anomalies must have also enhanced helium abundance, and we have proposed that this higher helium could be at the basis of the many different morphologies of GC horizontal branches (HB) for similar ages and metallicities. The helium variations have been beautifully confirmed by the splitting of the main sequence in the clusters ω Cen and NGC 2808, but this effect can show up only for somewhat extreme helium abundances. Therefore it is important to go on using the HB morphology to infer the number ratio of the first to the second generation in as many clusters as possible. We exemplify how it is possible to infer the presence of a He – rich stellar component in different clusters thanks to different HB features (gaps, RR Lyr periods and period distribution, ratio of blue to red stars, blue tails). In many clusters at least 50% of the stars belong to the second stellar generation, and in some cases we suspect that the stars might all belong to the second generation. We shortly examine the problem of the initial mass function required to achieve the observed number ratios and conclude that: 1) the initial cluster must have been much more massive than today's cluster, and 2) formation of the second stellar generation mainly in the central regions of the cluster may help in obtaining the desired values.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Bedin, L. R., Piotto, G., Anderson, J., Cassisi, S., King, I. R., Momany, Y., Carraro, G. 2004, ApJ, 605, L125CrossRefGoogle Scholar
Bekki, K. & Norris, J. E. 2006, ApJ Letters, 637, L109CrossRefGoogle Scholar
Briley, M. M., Cohen, J. G., & Stetson, P. B. 2002, ApJ Letters, 579, L17CrossRefGoogle Scholar
Briley, M. M., Harbeck, D., Smith, G. H., & Grebel, E. K. 2004, AJ, 127, 1588CrossRefGoogle Scholar
Caloi, V. & D'Antona, F. 2005, A&A, 121, 95Google Scholar
Caloi, V. & D'Antona, F. 2007, A&A, 463, 949Google Scholar
Caloi, V. & D'Antona, F. 2007, ApJ, in pressGoogle Scholar
Carretta, E., Bragaglia, A., Gratton, R. G., Leone, F., Recio-Blanco, A., & Lucatello, S. 2006, A&A, 450, 523Google Scholar
Castellani, M., Castellani, V., & Cassisi, S. 2005, A&A, 437, 1017Google Scholar
Cohen, J. G. & Meléndez, J. 2005, AJ, 129, 303CrossRefGoogle Scholar
D'Antona, F., Caloi, V., Montalbán, J., Ventura, P., & Gratton, R. 2002, A&A 395, 69Google Scholar
D'Antona, F. & Caloi, V. 2004, ApJ, 611, 871CrossRefGoogle Scholar
D'Antona, F., Bellazzini, M., Caloi, V., Fusi Pecci, F., Galleti, S., & Rood, R. T. 2005, ApJ, 631, 868CrossRefGoogle Scholar
Decressin, T., Meynet, G., Charbonnel, C., Prantzos, N., & Ekström, S. 2007, A&A, 464, 1029Google Scholar
Gratton, R. G. et al. 2001, A&A, 369, 87Google Scholar
Moehler, S., Sweigart, A.V., Landsman, W.B., Hammer, N.J., & Dreizler, S. 2004, A&A, 415, 313Google Scholar
Norris, J. E. 2004, ApJ Letters, 612, L25CrossRefGoogle Scholar
Piotto, G., et al. 2005, ApJ, 621, 777CrossRefGoogle Scholar
Piotto, G., et al. 2007, ApJ Letters, 661, L53CrossRefGoogle Scholar
Pritzl, B., Smith, H. A., Catelan, M., & Sweigart, A. V. 2000, ApJ Letters, 530, L41CrossRefGoogle Scholar
Raimondo, G., Castellani, V., Cassisi, S., Brocato, E., & Piotto, G. 2002, ApJ, 569, 975CrossRefGoogle Scholar
Salaris, M., Weiss, A., Ferguson, J. W., & Fusilier, D. J. 2006, ApJ, 645, 1131CrossRefGoogle Scholar
Sweigart, A. V., & Gross, P. G. 1976, ApJ Suppl. Series, 32, 367CrossRefGoogle Scholar
Ventura, P., D'Antona, F., Mazzitelli, I., & Gratton, R. 2001, ApJ Letters, 550, L65CrossRefGoogle Scholar
Ventura, P., D'Antona, F., & Mazzitelli, I. 2002, A&A, 393, 215Google Scholar