Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-28T23:37:41.841Z Has data issue: false hasContentIssue false

Coronal loop seismology using multiple transverse loop oscillation harmonics

Published online by Cambridge University Press:  01 September 2007

T. Van Doorsselaere
Affiliation:
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK email: t.van-doorsselaere@warwick.ac.uk
V. M. Nakariakov
Affiliation:
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK email: t.van-doorsselaere@warwick.ac.uk
E. Verwichte
Affiliation:
Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry, CV4 7AL, UK email: t.van-doorsselaere@warwick.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

TRACE observations (23/11/1998 06:35:57-06:48:43UT) in the 171 Å bandpass of an active region are studied. Coronal loop oscillations are observed after a violent disruption of the equilibrium. The oscillation properties are studied to give seismological estimates of physical quantities, such as the density scale height. A loop segment is traced during the oscillation, and the resulting time series is analysed for periodicities. In the loop segment displacement, two periods are found: 435.6±4.5 s and 242.7±6.4 s, consistent with the periods of the fundamental and 2nd harmonic fast kink oscillation. The small uncertainties allow us to estimate the density scale height in the loop to be 109 Mm, which is about double the estimated hydrostatical value of 50 Mm. The eigenfunction is used to do spatial coronal seismology, but that method does not give any conclusive results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Andries, J., Arregui, I., & Goossens, M. 2005a, ApJ, 624, L57CrossRefGoogle Scholar
Andries, J., Goossens, M., Hollweg, J. V., Arregui, I., & Van Doorsselaere, T. 2005b, A&A, 430, 1109Google Scholar
Arregui, I., Andries, J., van Doorsselaere, T., Goossens, M., & Poedts, S. 2007, A&A, 463, 333Google Scholar
Aschwanden, M. J., De Pontieu, B., Schrijver, C. J., & Title, A. M. 2002, Solar Phys., 206, 99CrossRefGoogle Scholar
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ, 520, 880CrossRefGoogle Scholar
Aschwanden, M. J., Nightingale, R. W., & Alexander, D. 2000, ApJ, 541, 1059CrossRefGoogle Scholar
Aschwanden, M. J., Nightingale, R. W., Andries, J., Goossens, M., & Van Doorsselaere, T. 2003, ApJ, 598, 1375CrossRefGoogle Scholar
Aschwanden, M. J., Schrijver, C. J., & Alexander, D. 2001, ApJ, 550, 1036CrossRefGoogle Scholar
Banerjee, D., Erdélyi, R., Oliver, R., & O'Shea, E. 2007, Solar Phys., 246, 3CrossRefGoogle Scholar
De Moortel, I. & Brady, C. S. 2007, ApJ, 664, 1210CrossRefGoogle Scholar
Dymova, M. V. & Ruderman, M. S. 2006, A&A, 459, 241Google Scholar
Edwin, P. M. & Roberts, B. 1983, Solar Phys., 88, 179CrossRefGoogle Scholar
Erdélyi, R. & Verth, G. 2007, A&A, 462, 743Google Scholar
Handy, B. N., Acton, L. W., Kankelborg, C. C., et al. 1999, Solar Phys., 187, 229CrossRefGoogle Scholar
Li, Y. P. & Gan, W. Q. 2006, ApJ Letters, 644, L97CrossRefGoogle Scholar
Lin, H., Kuhn, J. R., & Coulter, R. 2004, ApJ Letters, 613, L177CrossRefGoogle Scholar
Lin, H., Penn, M. J., & Tomczyk, S. 2000, ApJ Letters, 541, L83CrossRefGoogle Scholar
McEwan, M. P., Donnelly, G. R., Díaz, A. J., & Roberts, B. 2006, A&A, 460, 893Google Scholar
Nakariakov, V. M. & Ofman, L. 2001, A&A, 372, L53Google Scholar
Nakariakov, V. M., Ofman, L., DeLuca, E. E., Roberts, B., & Davila, J. M. 1999, Sci., 285, 862CrossRefGoogle Scholar
Nakariakov, V. M. & Verwichte, E. 2005, Living Rev. Solar Phys., 2, 3CrossRefGoogle Scholar
Roberts, B., Edwin, P. M., & Benz, A. O. 1984, ApJ, 279, 857CrossRefGoogle Scholar
Schrijver, C. J., Aschwanden, M. J., & Title, A. M. 2002, Solar Phys., 206, 69CrossRefGoogle Scholar
Uchida, Y. 1970, PASJ, 22, 341Google Scholar
Van Doorsselaere, T., Nakariakov, V. M., & Verwichte, E. 2007, A&A, 473, 959Google Scholar
Verth, G., Van Doorsselaere, T., Erdélyi, R., & Goossens, M. 2007, A&A, 475, 341Google Scholar
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2006, A&A, 452, 615Google Scholar
Verwichte, E., Nakariakov, V. M., Ofman, L., & Deluca, E. E. 2004, Solar Phys., 223, 77CrossRefGoogle Scholar
Wang, T. J. & Solanki, S. K. 2004, A&A, 421, L33Google Scholar
Zaitsev, V. V. & Stepanov, A. V. 1975, Issled. Geomagn. Aeron. Fiz. Solntsa, 3Google Scholar