Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-28T22:59:38.227Z Has data issue: false hasContentIssue false

A Census of Baryons in Galaxy Clusters and Groups

Published online by Cambridge University Press:  01 June 2007

Anthony H. Gonzalez
Affiliation:
Department of Astronomy, University of Florida, Gainesville, FL 32611-2055, USA email: anthony@astro.ufl.edu
Dennis Zaritsky
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721, USA Center for Cosmology and Particle Physics, Dept. of Physics, NYU, New York, NY, 10003, USA
Ann I. Zabludoff
Affiliation:
Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, Arizona 85721, USA Center for Cosmology and Particle Physics, Dept. of Physics, NYU, New York, NY, 10003, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While the baryon fraction in galaxy groups and clusters may be expected to reflect the universal value, observations of cluster baryon fractions have generally fallen short of this expectation and indicated a possible correlation with cluster mass. We present a new determination of the total baryon budget in nearby galaxy groups and clusters that includes the contributions from stars in galaxies, intracluster stars, and the intracluster medium. We find that the baryon mass fraction within r500 is independent of system mass and lower than the WMAP value. We conclude however that the present shortfall provides no compelling evidence for additional missing baryons, since it may arise due to a theoretically predicted deficit of baryons within r500 and systematic uncertainties associated with the mass determinations. With the addition of the ICL to the stellar mass in galaxies, the increase in X-ray gas mass fraction with increasing total mass is entirely accounted for by a decrease in the total stellar mass fraction, supporting the argument that the behavior of both the stellar and X-ray gas components is dominated by a decrease in star formation efficiency in more massive environments. Within just the stellar component, the fraction of the total stellar luminosity in the central, giant brightest cluster galaxy (BCG) and ICL (hereafter the BCG+ICL component) decreases as velocity dispersion (σ) increases, suggesting that ICL may grow less efficiently in higher mass environments. The identification of low mass groups with large BCG+ICL components also demonstrates that the massive cluster environment is not required to form intracluster stars. These proceedings are a condensed version of the work presented in Gonzalez, Zaritsky & Zabludoff (2007), and we refer the reader to that paper for a more complete discussion.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Aguerri, J. A. L., Gerhard, O. E., Arnaboldi, M., Napolitano, N. R., Castro-Rodriguez, N., & Freeman, K.-C. 2005, AJ, 129, 2585CrossRefGoogle Scholar
Bryan, G. L. 2000, ApJ (Letters), 544, L1Google Scholar
Cappellari, M., et al. 2006, MNRAS, 366, 1126Google Scholar
Christlein, D. & Zabludoff, A. I. 2003, ApJ, 591, 764CrossRefGoogle Scholar
Ciardullo, R., Williams, B. F., Durrell, P. R., Vinciguerra, M., Feldmeier, J. J., Jacoby, G. H., Sigurdsson, S., von Hippel, T., Ferguson, H., Tanvir, N., Arnaboldi, M., Gerhard, O., Aguerri, A., & Freeman, K. C. 2005, BAAS, 37, 1297Google Scholar
Durrell, P. R., Ciardullo, R., Feldmeier, J. J., Jacoby, G. H., & Sigurdsson, S. 2002, ApJ, 570, 119CrossRefGoogle Scholar
Ettori, S. 2003, MNRAS, 344, L13CrossRefGoogle Scholar
Ettori, S., Dolag, K., Borgani, S., & Murante, G. 2006, MNRAS, 365, 1021Google Scholar
Feldmeier, J. J., Ciardullo, R., Jacoby, G. H., & Durrell, P. R. 2004 a, ApJ, 615, 196CrossRefGoogle Scholar
Feldmeier, J. J., Mihos, J. C., Morrison, H. L., Harding, P., Kaib, N., & Dubinski, J. 2004 b, ApJ, 609, 617CrossRefGoogle Scholar
Gastaldello, F., Buote, D. A., Humphrey, P. J., Zappacosta, L., Bullock, J. S., Brighenti, F., & Mathews, W. G. 2006, ArXiv Astrophysics e-printsGoogle Scholar
Gerhard, O., Arnaboldi, M., Freeman, K. C., Kashikawa, N., Okamura, S., & Yasuda, N. 2005, ApJ (Letters), 621, L93Google Scholar
Girardi, M., Giuricin, G., Mardirossian, F., Mezzetti, M., & Boschin, W. 1998, ApJ, 505, 74Google Scholar
Gonzalez, A. H., Zaritsky, D., & Zabludoff, A. I. 2007, ApJ, 666, in pressCrossRefGoogle Scholar
Gonzalez, A. H., Zabludoff, A. I., & Zaritsky, D. 2005, ApJ, 618, 195CrossRefGoogle Scholar
Gonzalez, A. H., Zabludoff, A. I., Zaritsky, D., & Dalcanton, J. J. 2000, ApJ, 536, 561Google Scholar
He, P., Feng, L.-L., & Fang, L.-Z. 2005, ApJ, 623, 601Google Scholar
Krick, J. E., Bernstein, R. A., & Pimbblet, K. A. 2006, AJ, 131, 168CrossRefGoogle Scholar
Lin, Y.-T. & Mohr, J. J. 2004, ApJ, 617, 879CrossRefGoogle Scholar
Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2003, ApJ, 591, 749CrossRefGoogle Scholar
Lin, Y.-T., Mohr, J. J., & Stanford, S. A. 2004, ApJ, 610, 745Google Scholar
McCarthy, I. G., Bower, R. G., & Balogh, M. L. 2007, MNRAS, 377, 1457Google Scholar
Merritt, D. 1984, ApJ, 276, 26Google Scholar
Moore, B., Katz, N., Lake, G., Dressler, A., & Oemler, A. Jr., 1996, Nature, 379, 613Google Scholar
Moore, B., Lake, G., & Katz, N. 1998, ApJ, 495, 139CrossRefGoogle Scholar
Murante, G., Arnaboldi, M., Gerhard, O., Borgani, S., Cheng, L. M., Diaferio, A., Dolag, K., Moscardini, L., Tormen, G., Tornatore, L., & Tozzi, P. 2004, ApJ (Letters), 607, L83Google Scholar
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2002, AJ, 124, 266Google Scholar
Rasmussen, J. & Ponman, T. J. 2006, ArXiv Astrophysics e-printsGoogle Scholar
Rudick, C. S., Mihos, J. C., & McBride, C. 2006, ApJ, 648, 936CrossRefGoogle Scholar
Seigar, M. S., Graham, A. W., & Jerjen, H. 2007, MNRAS, 378, 1575Google Scholar
Sommer-Larsen, J. 2006, MNRAS, 369, 958Google Scholar
Sommer-Larsen, J., Romeo, A. D., & Portinari, L. 2005, MNRAS, 357, 478Google Scholar
Spergel, D. N., et al. 2006, ApJGoogle Scholar
Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S., & Van Speybroeck, L. 2006, ApJ, 640, 691Google Scholar
White, S. D. M., Navarro, J. F., Evrard, A. E., & Frenk, C. S. 1993, Nature, 366, 429Google Scholar
Willman, B., Governato, F., Wadsley, J., & Quinn, T. 2004, MNRAS, 355, 159Google Scholar
Wu, X.-P., Xue, Y.-J., & Fang, L.-Z. 1999, ApJ, 524, 22Google Scholar
Zabludoff, A. I., Huchra, J. P., & Geller, M. J. 1990, ApJS, 74, 1CrossRefGoogle Scholar
Zaritsky, D., Gonzalez, A. H., & Zabludoff, A. I. 2004, ApJ (Letters), 613, L93Google Scholar
Zaritsky, D., Gonzalez, A. H., & Zabludoff, A. I. 2006, ApJ, 638, 725Google Scholar
Zaritsky, D., Schectman, S. A., & Bredthauer, G. 1996, PASP, 108, 104Google Scholar
Zhang, Y., Finoguenov, A., Boehringer, H., Kneib, J., Smith, G. P., Czoske, O., & Soucail, G. 2007, A&A, 467, 437Google Scholar
Zibetti, S., White, S. D. M., Schneider, D. P., & Brinkmann, J. 2005, MNRAS, 358, 949CrossRefGoogle Scholar