Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T08:15:57.873Z Has data issue: false hasContentIssue false

Submillimeter Array observations of 321 GHz water maser emission in Cepheus A

Published online by Cambridge University Press:  01 March 2007

Nimesh A. Patel
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA 02138, USA email: npatel@cfa.harvard.edu
Salvador Curiel
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Mexico
Qizhou Zhang
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA 02138, USA email: npatel@cfa.harvard.edu
T. K. Sridharan
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA 02138, USA email: npatel@cfa.harvard.edu
Paul T. P. Ho
Affiliation:
Harvard-Smithsonian Center for Astrophysics, Cambridge MA 02138, USA email: npatel@cfa.harvard.edu Academia Sinica Institute of Astronomy and Astrophysics, Taipei, Taiwan
José M. Torrelles
Affiliation:
Instituto de Ciencias del Espacio (CSIC)-IEEC, Facultat de Física, Universitat de Barcelona, Barcelona, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using the Submillimeter Array (SMA) we have imaged for the first time the 321.226 GHz, 1029 − 936 ortho-H2O maser emission. This is also the first detection of this line in the Cepheus A high-mass star-forming region. The 22.235 GHz, 616 – 523 water masers were also observed with the Very Large Array 43 days following the SMA observations. Three of the nine detected submillimeter maser spots are associated with the centimeter masers spatially as well as kinematically, while there are 36 22 GHz maser spots without corresponding submillimeter masers. In the HW2 source, both the 321 GHz and 22 GHz masers occur within the region of ~1″ which includes the disk-jet system, but the position angles of the roughly linear structures traced by the masers indicate that the 321 GHz masers are along the jet while the 22 GHz masers are perpendicular to it. We interpret the submillimeter masers in Cepheus A to be tracing significantly hotter regions (600~2000 K) than the centimeter masers.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Brand, J., Felli, M., Cesaroni, R. et al. 2007, this volumeGoogle Scholar
Brogan, C., Chandler, C., Hunter, T., et al. 2007 to appear in ApJL, astro-ph/0703626Google Scholar
Comito, C., Schilke, P., Jiménez-Serra, I. & Martín-Pintado, J. 2005, IAU 231 Symposium Astrochemistry throughout the Universe, eds: Lis, D. C., Blake, G. A. & Herbst, E., Cambridge University PressGoogle Scholar
Curiel, S., et al. 2006, ApJ, 638, 878CrossRefGoogle Scholar
Elitzur, M., Hollenbach, D. J., & McKee, C. F. 1989, ApJ, 246, 983CrossRefGoogle Scholar
Gallimore, J. F., Cool, R. J., Thornley, M. D., & McMullin, J. 2003, ApJ, 586, 306CrossRefGoogle Scholar
Garay, G., Ramírez, S., Rodríguez, L. F., Curiel, S., & Torrelles, J. M., 1996, ApJ, 459, 193CrossRefGoogle Scholar
Gómez, J. F., Sargent, A. I., Torrelles, J. M., et al. 1999, ApJ, 514, 287CrossRefGoogle Scholar
Ho, P. T. P., Moran, J. M. & Lo, K. Y., 2006, ApJ, 616, L1CrossRefGoogle Scholar
Hughes, V. A. & Wouterloot, J. G. A. 1984, ApJ, 276, 204CrossRefGoogle Scholar
Humphreys, E. 2007 this volumeGoogle Scholar
Lekht, E., Pashchenko, M., Rudnitskii, G., & Sorochenko, R. 1982, Soviet Astron., 26, 168Google Scholar
Martín-Pintado, J., Jiménez-Serra, I., Rodríguez-Franco, A., Martín, S., & Thum, C. 2005, ApJ, 628, L61CrossRefGoogle Scholar
Menten, K. M., Melnick, G. J., & Phillips, T. G. 1990, ApJ, 350, L41CrossRefGoogle Scholar
Melnick, G. J., Menten, K. M., Phillips, T. G. & Hunter, T., 1993, ApJ, 416, L37CrossRefGoogle Scholar
Neufeld, D. A., & Melnick, G. J. 1990, ApJ, 352, L9CrossRefGoogle Scholar
Neufeld, D. A., & Melnick, G. J. 1991, ApJ, 368, 215CrossRefGoogle Scholar
Patel, N. A., Greenhill, L. J., Herrnstein, J., et al. 2000, ApJ, 538, 268CrossRefGoogle Scholar
Patel, N. A, Curiel, S., Sridharan, T. K. et al. , 2005, Nature, 437, 109CrossRefGoogle Scholar
Patel, N. A, Curiel, S., Zhang, Q. et al. , 2007, ApJ, 658, 55CrossRefGoogle Scholar
Rodriguez, L., Moran, J. M., & Ho, P. T. P. 1980, ApJ, 240, 149.CrossRefGoogle Scholar
Sargent, A. I. 1977, ApJ, 218, 736CrossRefGoogle Scholar
Strelńitskii, V. S. & Sunyaev, R. A. 1972, Soviet Astron., 16, 579.Google Scholar
Sugiayama, K., FujiSawa, K., Honma, M. et al. , 2007, this volumeGoogle Scholar
Torrelles, J. M., Gómez, J. F., Rodríguez, L. F., Curiel, S., Ho, P. T. P., & Garay, G., 1996, ApJ, 457, L107CrossRefGoogle Scholar
Torrelles, J. M., et al. 2001a, ApJ 560, 853CrossRefGoogle Scholar
Torrelles, J. M., et al. 2001b, Nature 411, 277CrossRefGoogle Scholar
Torstensson, K. & van Langevelde, H. 2007, this volumeGoogle Scholar
Uscanga, L., Canto, J. & Raga, A. C. 2007, this volumeGoogle Scholar
Vlemmings, W. H. T., Diamond, P. J., van Langevelde, H. J., & Torrelles, J. M. 2006, A&A, 448, 597.Google Scholar
Yates, J. A., Field, D., & Gray, M. D., 1997, MNRAS, 285, 303.CrossRefGoogle Scholar