Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T00:25:52.068Z Has data issue: false hasContentIssue false

Masers as probes of supersonic turbulence

Published online by Cambridge University Press:  01 March 2007

Vladimir Strelnitski*
Affiliation:
Maria Mitchell Observatory, Nantucket, MA email: vladimir@mmo.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A possible intimate connection between astrophysical masers in regions of star formation and turbulence has been a subject of increasing interest during the last two decades. Evidence for the presence of a residual turbulent component in the observed expansion and rotation of clusters of water masers was shown by multi-epoch VLBI maps. The water maser hot spots demonstrate self-similar (fractal) spatial clustering and a power-law two-point velocity correlation function similar to that of incompressible turbulence – with the power index close to “Kolmogorov's” 1/3. The possibility of using maser sources for studying supersonic turbulence critically depends on whether the observed hot spots are an integral effect of radiative transfer over a large distance, comparable to the size of the whole maser source, or whether they are compact local physical objects, such as small random shocks, in which the mechanical energy of turbulence dissipates. If the latter hypothesis is correct, the compact and bright maser hot spots may be excellent local probes of the spatial and kinematic structure of supersonic turbulence. Observational and theoretical arguments for and against these hypotheses are discussed and the first quantitative results about supersonic turbulence obtained by statistical analysis of maser sources are presented in this review.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2008

References

Boldyrev, S. 2002, ApJ 569, 841Google Scholar
Clegg, A. W. & Cordes, J. M. 1991, ApJ 374, 150Google Scholar
Cordes, J. M. 1993, in: Clegg, A. W. & Nedoluha, G. E. (eds.) Astrophysical Masers (Berlin-Heidelberg: Springer-Verlag), p. 251Google Scholar
Deguchi, S. 1994, ApJ 420, 551Google Scholar
Deguchi, S. & Watson, W. D. 1989, ApJ 340, L17Google Scholar
Elmegreen, B. G. 1993, in: Levy, E. H. & Lunine, J. I. (eds.) Protostars and Planets III (Tucson: Univ. Arizona Press), p. 97Google Scholar
Elemegreen, B. G. & Elemegreen, D. M. 2001, AJ 121, 1507Google Scholar
Falgarone, E. & Phillips, T. G. 1990, ApJ 359, 344Google Scholar
Falgarone, E., Lis, D. C., Phillips, T. G., Pouquet, A., Porter, D. H. & Woodward, P. R. 1990, ApJ 436, 728Google Scholar
Gail, H.-P., Kegel, W. H. & Sedlmayr, E. 1975, A&A 42, 81Google Scholar
Gangadhara, R. T., Deguchi, S. & Lesch, H. 1999, Physics of Plasmas 6, 4088Google Scholar
Genzel, R. et al. 1981, ApJ 247, 1039Google Scholar
Gwinn, C. R. 1994, ApJ 429, 241Google Scholar
Gwinn, C. R., Moran, J. M., Reid, M. J., & Schneps, M. H. 1981, ApJ 330, 817Google Scholar
Gwinn, C. R., Moran, J. M., & Reid, M. J. 1992, ApJ 393, 149Google Scholar
Hansen, J., Booth, R. S., Dennison, B. & Diamond, P. J. 1993, in: Clegg, A. W. & Nedoluha, G. E. (eds.) Astrophysical Masers (Berlin-Heidelberg: Springer-Verlag), p. 255Google Scholar
Holder, B. P., Nezhdanova, N., Shishov, V. I. & Strelnitski, V. 2007, in preparationGoogle Scholar
Imai, H., Deguchi, S. & Sasai, T. 2002, ApJ 567, 971Google Scholar
Larson, R. B. 1981, MNRAS 194, 809Google Scholar
Larson, R. B. 1995, MNRAS 272, 213Google Scholar
Mandelbrot, B. B. 1982, The Fractal Geometry of Nature (New York: Freeman)Google Scholar
McGrath, E. J., Goss, W. M. & DePree, C. G. 2004, ApJS 155, 577Google Scholar
Minier, V., Booth, R. S. & Conway, J. E. 2002, A&A 383, 614Google Scholar
Moran, J. M., Papadopoulos, G. D., Burke, B. F. et al. 1973, ApJ 185, 535Google Scholar
Odekon, M. C. 2006, AJ 132, 1834Google Scholar
Radhakrishnan, V., Goss, W. M. & Bhandari, R. 1975, Pramana 5, 49Google Scholar
Reid, M. J., Schneps, M. H., Moran, J. M., Gwinn, C. R., Genzel, R., Downes, D. & Rönnäng, B. 1988, ApJ 330, 809Google Scholar
Ricket, B. J. 1990, ARAA 28, 561Google Scholar
Ripman, B. H. 2007, Journal of Young Investigators, accepted (October 2007 issue)Google Scholar
Scalo, J. M. 1987, in: Hollenbach, D. J. & Thronson, H. A., Jr. (eds.) Interstellar Processes (Dordrecht: Reidel), p. 349Google Scholar
Shmeld, I. K., Strelnitski, V. & Muzylev, V. V. 1976, Soviet Astron. 20, 411Google Scholar
Sobolev, A. M., Wallin, B. K. & Watson, W. D. 1998, ApJ 498, 763Google Scholar
Sobolev, A. M., Watson, W. D. & Okorokov, V. A. 2003, ApJ 590, 333Google Scholar
Strelnitski, V. 1984, MNRAS 207, 339Google Scholar
Strelnitski, V. & Sunyaev, R. A. 1973, Soviet Astron. 16, 579Google Scholar
Strelnitski, V. S., Alexander, J., Moran, J. M. & Reid, M. J. 1998, in: Zensus, J. A., Taylor, G. B. & Wrobel, J. M. (eds.) Radio Emission from Galactic and Extragalactic Compact Sources, IAU Coll. 164, ASP Conf. Series, 144, p. 369Google Scholar
Strelnitski, V., Alexander, J., Gezari, S., Holder, B. P., Moran, J. M. & Reid, M. J. 2002, ApJ 581, 1180Google Scholar
Truong, P. 2007, Journal of Young Investigators, accepted (October 2007 issue)Google Scholar
vonWeizsäcker, C. F. Weizsäcker, C. F. 1951, ApJ. 114, 165Google Scholar
Walker, R. C. 1984, ApJ. 280, 618Google Scholar
Walker, R. C., Matsakis, D. N. & Garcia-Barreto, J. A. 1982, ApJ. 255, 128Google Scholar
Wallin, B. K., Watson, W. D. & Wyld, H. W. 1998, ApJ. 495, 774Google Scholar
Wallin, B. K., Watson, W. D. & Wyld, H. W. 1999, ApJ. 517, 682Google Scholar
Watson, W. D. & Wiebe, D. S. 2001, ApJ. 557, 967Google Scholar
Watson, W. D.; Wiebe, D. S.; McKinney, J. C. & Gammie, C. F. 2004, ApJ. 604, 707Google Scholar
Wiebe, D. S. & Watson, W. D. 1998, ApJ. 503, L71Google Scholar