Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-19T14:52:01.225Z Has data issue: false hasContentIssue false

The nature of stellar winds in the star-disk interaction

Published online by Cambridge University Press:  01 May 2007

Sean Matt
Affiliation:
Dept. of Astronomy, U. of VirginiaPO Box 400325, Charlottesville, VA 22904-4325, USA email: spm5x@virginia.edu
Ralph E. Pudritz
Affiliation:
Physics and Astronomy Dept., McMaster University, Hamilton, ON, L8S 4M1, Canada email: pudritz@physics.mcmaster.ca
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stellar winds may be important for angular momentum transport from accreting T Tauri stars, but the nature of these winds is still not well-constrained. We present some simulation results for hypothetical, hot (∼ 106 K) coronal winds from T Tauri stars, and we calculate the expected emission properties. For the high mass loss rates required to solve the angular momentum problem, we find that the radiative losses will be much greater than can be powered by the accretion process. We place an upper limit to the mass loss rate from accretion-powered coronal winds of ∼ 10−11M yr−1. We conclude that accretion powered stellar winds are still a promising scenario for solving the stellar angular momentum problem, but the winds must be cool (e.g., 104 K) and thus are not driven by thermal pressure.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Bisnovatyi-Kogan, G. S. & Lamzin, S. A. 1977, Soviet Astronomy, 21, 720Google Scholar
Decampli, W. M. 1981, AJ, 244, 124Google Scholar
Dere, K. P., Landi, E., Mason, H. E., Monsignori Fossi, B. C., Young, P. R. 1997, A&AS, 125, 149Google Scholar
Dupree, A. K., Brickhouse, N. S., Smith, G. H., Strader, J. 2005, ApJ, 625, L131Google Scholar
Edwards, S., Fischer, W., Hillenbrand, L., Kwan, J. 2006, AJ, 646, 319CrossRefGoogle Scholar
Edwards, S., Fischer, W., Kwan, J., Hillenbrand, L., Dupree, A. K. 2003, ApJ, 599, L41CrossRefGoogle Scholar
Feigelson, E. D. & Montmerle, T. 1999, ARA&A, 37, 363Google Scholar
Ferreira, J., Dougados, C., Cabrit, S. 2006, A&A, 453, 785Google Scholar
Ferreira, J., Pelletier, G., Appl, S. 2000, MNRAS, 312, 387CrossRefGoogle Scholar
Goodson, A. P., Böhm, K., & Winglee, R. M. 1999, AJ, 524, 142Google Scholar
Hartmann, L. & Stauffer, J. R. 1989, AJ, 97, 873Google Scholar
Herbst, W., Eislöffel, J., Mundt, R., Scholz, A. 2007, in Protostars and Planets V, ed. Reipurth, B., Jewitt, D., & Keil, K., 297–311Google Scholar
Johns-Krull, C. M. & Gafford, A. D. 2002, AJ, 573, 685CrossRefGoogle Scholar
Johns-Krull, C. M. & Herczeg, G. J. 2007, AJ, 655, 345CrossRefGoogle Scholar
Kurosawa, R., Harries, T. J., Symington, N. H. 2006, MNRAS, 370, 580Google Scholar
Kwan, J., Edwards, S., Fischer, W. 2007, AJ, 657, 897Google Scholar
Landi, E., Del Zanna, G., Young, P. R., Dere, K. P., Mason, H. E., Landini, M. 2006, ApJS, 162, 261CrossRefGoogle Scholar
Matt, S. & Balick, B. 2004, AJ, 615, 921Google Scholar
Matt, S. & Pudritz, R. E. 2005, MNRAS, 356, 167CrossRefGoogle Scholar
Matt, S. & Pudritz, R. E. 2007, to appear in proceedings of the 14th Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, astro-ph/0701648Google Scholar
Matt, S., Winglee, R., Böhm, K.-H. 2003, MNRAS, 345, 660Google Scholar
Parker, E. N. 1958, AJ, 128, 664Google Scholar