Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-18T06:22:18.401Z Has data issue: false hasContentIssue false

The stellar initial mass function

Published online by Cambridge University Press:  01 December 2006

Pavel Kroupa*
Affiliation:
Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, D-53347 Bonn, Germany email: pavel@astro.uni-bonn.de
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The IMF UNIVERSALITY HYPOTHESIS cannot be discarded despite the existence of the CLUSTER IMF THEOREM. This means that the currently existing star-formation theory fails to describe the stellar outcome. The IGIMF THEOREM, however, predicts a variation of galaxy-wide IMFs in dependence of the galaxy's star-formation rate even if the IMF UNIVERSALITY HYPOTHESIS is valid. Taking indirect evidence from chemical evolution studies and the IGIMF THEOREM into account, it follows, however, that bulges and elliptical galaxies may have had a top-heavy IMF. A break-down of the IMF UNIVERSALITY THEOREM would thus be evident in extreme galaxy-wide (≳ 10 M⊙yr) star-formation events.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Adams, F. C., & Fatuzzo, M. (1996). ApJ, 464 256CrossRefGoogle Scholar
Adams, F. C., & Laughlin, G. (1996). ApJ, 468 586CrossRefGoogle Scholar
Alves, J., Lombardi, M., & Lada, C.J. (2007). A&A, 462, L17Google Scholar
Ballero, S., Matteucci, F., & Origlia, L. (2006). astro-ph/0611650Google Scholar
Ballero, S., Kroupa, P., & Matteucci, F. (2007),MNRAS, submittedGoogle Scholar
Baraffe, I., Chabrier, G., Allard, F., & Hauschildt, P.H. (2002). A&A, 382 563Google Scholar
Baumgardt, H., & Kroupa, P., (2007). MNRAS, submittedGoogle Scholar
Baumgardt, H., & Makino, J. (2003). MNRAS, 340 227CrossRefGoogle Scholar
Bastian, N., & Goodwin, S.P. (2006). MNRAS, 369, L9CrossRefGoogle Scholar
Boily, C. M., Lançon, A., Deiters, S., & Heggie, D. C. (2005). ApJ, 620, L27CrossRefGoogle Scholar
Bonnell, I. A., & Davies, M.B. (1998). MNRAS,295 691CrossRefGoogle Scholar
Bonnell, I. A., Larson, R., & Zinnecker, H. (2006) Proto Stars and Planets V, astro-ph/0603447Google Scholar
Casuso, E., & Beckman, J.E., (2007). ApJ in pressGoogle Scholar
Chabrier, G. (2003). PASP 115, 763CrossRefGoogle Scholar
Delfosse, X., Forveille, T., Ségransan, D., Beuzit, J.-L., Udry, S., Perrier, C., & Mayor, M. (2000). A&A,364 217Google Scholar
Elmegreen, B. G. (1997). ApJ, 486 944CrossRefGoogle Scholar
Elmegreen, B. G. (1999). ApJ,515 323CrossRefGoogle Scholar
Elmegreen, B. G. (2004). MNRAS, 354 367CrossRefGoogle Scholar
Elmegreen, B. G. (2006). ApJ, 648 572CrossRefGoogle Scholar
Fellhauer, M., Kroupa, P., & Evans, N.W. (2006). MNRAS, 372 338CrossRefGoogle Scholar
Feltzing, S., Gilmore, G., & Wyse, R.F.G. (1999). ApJ, 516, L17CrossRefGoogle Scholar
Figer, D. F. (2005). Nature,434 192CrossRefGoogle Scholar
Fleck, J.-J., Boily, C. M., Lançon, A., & Deiters, S. (2006). MNRAS,369 1392CrossRefGoogle Scholar
Goodwin, S. P., & Bastian, N. (2006). MNRAS,373 752CrossRefGoogle Scholar
Goodwin, A. P., Nutter, D., & Kroupa, P., Ward-Thompson, D., Whitworth, A.P., (2007). in preparationGoogle Scholar
Grillmair, C. J. et al. , (1998). AJ, 115,144CrossRefGoogle Scholar
Hillenbrand, L. A., & Hartmann, L. W. (1998). ApJ 492, 540CrossRefGoogle Scholar
Kennicutt, R. C. Jr., (1983). ApJ 272, 54CrossRefGoogle Scholar
Kim, S. S., Figer, D. F., Kudritzki, R. P., & Najarro, F. (2006). ApJL, astro-ph/0611377Google Scholar
Klessen, R. S., Spaans, M., & Jappsen, A.-K. (2006). MNRAS L115, astro-ph/0610557Google Scholar
Koen, C. (2006). MNRAS 365, 590CrossRefGoogle Scholar
Koeppen, J., Weidner, C., & Kroupa, P. (2007). MNRAS, in press, astro-ph/0611723Google Scholar
Kroupa, P., (1995a). ApJ 453, 350CrossRefGoogle Scholar
Kroupa, P. (1995b). ApJ 453, 358CrossRefGoogle Scholar
Kroupa, P. (2001). MNRAS 322, 231CrossRefGoogle Scholar
Kroupa, P. (2002). Science 295, 82CrossRefGoogle Scholar
Kroupa, P. (2005), in ESA SP-576: The Three-Dimensional Universe with Gaia, 629 (astro-ph/0412069)Google Scholar
Kroupa, P., & Boily, C. M. (2002). MNRAS 336, 1188CrossRefGoogle Scholar
Kroupa, P., & Weidner, C. (2003). ApJ 598, 1076CrossRefGoogle Scholar
Kroupa, P., Weidner, C. (2005). IAU Symposium 227, 423, astro-ph/0507582CrossRefGoogle Scholar
Kroupa, P., Aarseth, S., & Hurley, J. (2001). MNRAS 321, 699CrossRefGoogle Scholar
Kroupa, P., Tout, C. A., & Gilmore, G. (1993). MNRAS 262, 545CrossRefGoogle Scholar
Kroupa, P., Bouvier, J., Duchěne, G., & Moraux, E. (2003). MNRAS 346, 354CrossRefGoogle Scholar
Larson, R. B. (1998). MNRAS, 301, 569CrossRefGoogle Scholar
Lee, H.-c., Gibson, B.K., Flynn, C., Kawata, D., & Beasley, M.A. (2004). MNRAS 353, 113CrossRefGoogle Scholar
MaízApellániz, J. Apellániz, J. (2007). ApJ submitted (astro-ph/0612012)Google Scholar
MaízApellániz, J. Apellániz, J., & Úbeda, L. (2005). ApJ 629, 873CrossRefGoogle Scholar
Martín, E. L., Brandner, W., Bouvier, J., Luhman, K. L., Stauffer, J., Basri, G., ZapateroOsorio, M. R. Osorio, M. R., & Barradoy Navascués, D. y Navascués, D. (2000). ApJ 543, 299CrossRefGoogle Scholar
Massey, P. (2003). AR&A 41, 15Google Scholar
Metz, M., & Kroupa, P. (2007). MNRAS astro-ph/0701289Google Scholar
Moraux, E., Bouvier, J., & Clarke, C. (2004). SF2A-2004: Semaine de l'Astrophysique Francaise, Combes, F., Barret, D., Contini, T., Meynadier, F. and Pagani, L. (eds), 251Google Scholar
Motte, F., Andre, P., & Neri, R. (1998). A&A 336, 150Google Scholar
Motte, F., André, P., Ward-Thompson, D., & Bontemps, S. (2001). A&A 372, L41Google Scholar
Murray, S. D., & Lin, D. N. C. (1996). ApJ 467, 728CrossRefGoogle Scholar
Nutter, D., & Ward-Thompson, D. (2007). MNRAS, in press astro-ph/0611164Google Scholar
Oasa, Y., et al. Google Scholar
Oey, M. S., & Clarke, C. J. (2005). ApJL 620, L43CrossRefGoogle Scholar
Pflamm-Altenburg, J., & Kroupa, P. (2006a). MNRAS 373, 295CrossRefGoogle Scholar
Pflamm-Altenburg, J., & Kroupa, P. (2006b). MNRAS in press, astro-ph/0611517Google Scholar
Pipino, A., & Matteucci, F. (2004). MNRAS 347, 968CrossRefGoogle Scholar
Portinari, L., Sommer-Larsen, J., & Tantalo, R. (2004). MNRAS 347, 691CrossRefGoogle Scholar
Preibisch, T., Balega, Y., Hofmann, K., Weigelt, G., & Zinnecker, H. (1999). New Astronomy 4, 531CrossRefGoogle Scholar
Reid, I. N., Gizis, J. E., & Hawley, S. L. (2002). AJ 124, 2721CrossRefGoogle Scholar
Romano, D., Chiappini, C., Matteucci, F., & Tosi, M. (2005). A&A 430, 491Google Scholar
Salpeter, E. E. (1955). ApJ 121, 161CrossRefGoogle Scholar
Scalo, J. M. (1986). Fundamentals of Cosmic Physics 11, 1Google Scholar
Scalo, J. (1998). in ASP Conf. Ser. 142: The Stellar Initial Mass Function (38th Herstmonceux Conference) The IMF Revisited: A Case for Variations. pp. 201Google Scholar
Tilley, D. A., & Pudritz, R. E. (2005). Protostars and Planets V, 8473Google Scholar
Tinsley, B. M. (1980). Fundamentals of Cosmic Physics 5, 287Google Scholar
Weidner, C., & Kroupa, P. (2004). MNRAS 348, 187CrossRefGoogle Scholar
Weidner, C., & Kroupa, P. (2005). ApJ 625, 754CrossRefGoogle Scholar
Weidner, C., & Kroupa, P. (2006). MNRAS 365, 1333CrossRefGoogle Scholar
Weidner, C., Kroupa, P., & Larsen, S. S. (2004). MNRAS 350, 1503CrossRefGoogle Scholar
Weidner, C., Kroupa, P., Nürnberger, D., Sterzik, M., (2007). MNRAS, in pressGoogle Scholar
Wuchterl, G., & Tscharnuter, W. M. (2003). A&A, 398, 1081Google Scholar
Zinnecker, H. (2003). IAU Symposium 212, 80Google Scholar
Zoccali, M., Cassisi, S., Frogel, J. A., Gould, A., Ortolani, S., Renzini, A., Rich, R. M., & Stephens, A. W. (2000). ApJ 530, 418CrossRefGoogle Scholar
Zoccali, M., et al. (2006). A&A 457, L1Google Scholar