Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T15:22:40.663Z Has data issue: false hasContentIssue false

Interferometric Constraints on Gravity Darkening with Application to the Modeling of Spica A & B

Published online by Cambridge University Press:  12 July 2007

J.P. Aufdenberg
Affiliation:
National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719, USA email: aufded93@erau.edu
M. J. Ireland
Affiliation:
Planetary Science, California Institude of Technology, 1200 E. California Blvd, Mail Code 150-21, Pasadena CA 91125, USA
A. Mérand
Affiliation:
The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023, USA
V. Coudé du Foresto
Affiliation:
LESIA, UMR 8109, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon, France
O. Absil
Affiliation:
Insitut d'Astrophysique et de Géophysique, University of Liège, 17 Allée du Six Août, B-40000 Liège, Belgium
E. Di Folco
Affiliation:
Observatoire de Genève, Switzerland
P. Kervella
Affiliation:
LESIA, UMR 8109, Observatoire de Paris, 5 place J. Janssen, 92195 Meudon, France
W. G. Bagnuolo
Affiliation:
Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302, USA
D. R. Gies
Affiliation:
Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302, USA
S. T. Ridgway
Affiliation:
National Optical Astronomy Observatory, 950 N. Cherry Ave, Tucson, AZ 85719, USA email: aufded93@erau.edu
D. H. Berger
Affiliation:
University of Michigan, Department of Astronomy, 500 Church St, 917 Dennison Bldg., Ann Arbor, MI 48109, USA
T. A. ten Brummelaar
Affiliation:
The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023, USA
H. A. McAlister
Affiliation:
Center for High Angular Resolution Astronomy, Department of Physics and Astronomy, Georgia State University, P.O. Box 3969, Atlanta, GA 30302, USA
J. Sturmann
Affiliation:
The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023, USA
L. Sturmann
Affiliation:
The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023, USA
N. H. Turner
Affiliation:
The CHARA Array, Mount Wilson Observatory, Mount Wilson, CA 91023, USA
A. P. Jacob
Affiliation:
School of Physics, University of Sydney, NSW 2006, Austrailia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In 2005 we obtained very precise interferometric measurements of the pole-on rapid rotator Vega (A0 V) with the longest baselines of the Center for High Angular Angular Resolution (CHARA) Array and the Fiber Linked Unit for Optical Recombination (FLUOR). For the analysis of these data, we developed a code for mapping sophisticated PHOENIX model atmospheres on to the surface of rotationally distorted stars described by a Roche-von Zeipel formalism. Given a set of input parameters for a star or binary pair, this code predicts the interferometric visibility, spectral energy distribution and high-resolution line spectrum expected for the system. For the gravity-darkened Vega, our model provides a very good match to the K-band interferometric data, a good match to the spectral energy distribution – except below 160 nm – and a rather poor match to weak lines in the high dispersion spectrum where the model appears overly gravity darkened. In 2006, we used the CHARA Array and FLUOR to obtain high precision measurements of the massive, non-eclipsing, double-line spectroscopic binary Spica, a 4-day period system where both components are gravity darkened rapid rotators. These data supplement recent data obtained with the Sydney University Stellar Interferometer (SUSI). Our study follows the classic 1971 study by Herbison-Evans et al. who resolved Spica as a binary with the Narrabri Stellar Intensity Interferometer (NSII). We will report on our progress modeling the new interferometric and archival spectroscopic data, with the goal towards better constraining the apsidal constant.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Anderson, J.A. 1920, ApJ, 51, 263 CrossRefGoogle Scholar
Aufdenberg, J.P., Mérand, A., Foresto, V.C.d., Absil, O., Di, Folco, E., Kervella, P., Ridgway, S.T., Berger, D.H., ten, Brummelaar, T.A., McAlister, H.A., Sturmann, J., Sturmann, L., & Turner, N.H. 2006, ApJ, 645, 664 CrossRefGoogle Scholar
ten, Brummelaar, T.A., McAlister, H.A., Ridgway, S.T., Bagnuolo, W.G., Turner, N.H., Sturmann, L., Sturmann, J., Berger, D.H., Ogden, C.E., Cadman, R., Hartkopf, W.I., Hopper, C.H., & Shure, M.A. 2005, ApJ, 628, 453 Google Scholar
Claret, A. 2003, A&A, 399, 1115 Google Scholar
Claret, A. & Gimenez, A. 1993, A&A, 277, 487 Google Scholar
Claret, A. & Willems, B. 2002, A&A, 388, 518 Google Scholar
Coudédu Foresto, V., Borde, P.J., Merand, A., Baudouin, C., Remond, A., Perrin, G.S., Ridgway, S.T., ten, Brummelaar, T.A., & McAlister, H.A. 2003, in Interferometry for Optical Astronomy II. Edited by Wesley A. Traub. Proceedings of the SPIE, Volume 4838, 280–285Google Scholar
Cranmer, S.R. 1993, MNRAS, 263, 989 CrossRefGoogle Scholar
Ducati, J.R. 2002, VizieR Online Data Catalog, 2237, 0Google Scholar
Dukes, R.J. 1974, ApJ, 192, 81 CrossRefGoogle Scholar
Glushneva, I.N., Doroshenko, V.T., Fetisova, T.S., Khruzina, T.S., Kolotilov, E.A., Mossakovskaya, L.V., Ovchinnikov, S.L., & Voloshina, I.B. 1998, VizieR Online Data Catalog, 3208, 0Google Scholar
Glushneva, I.N., Kharitonov, A.V., Knyazeva, L.N., & Shenavrin, V.I. 1992, A&AS, 92, 1 Google Scholar
Herbison-Evans, D., Hanbury, Brown, R., Davis, J., & Allen, L.R. 1971, MNRAS, 151, 161 CrossRefGoogle Scholar
Hill, G., Gulliver, A.F., & Adelman, S.J. 2004, in: Zverko, J. et al. (eds.), The A-Star Puzzle., Proc. IAU Symposium No. 224 (San Francisco: ASP), p.35CrossRefGoogle Scholar
Ireland, M. 2005, PhD thesis, University of SydneyGoogle Scholar
Luyten, W.J. & Ebbighausen, E. 1935, ApJ, 81, 305 CrossRefGoogle Scholar
Lyubimkov, L.S., Rachkovskaya, T.M., Rostopchin, S.I., & Tarasov, A.E. 1995, Astron. Rep., 39, 186 Google Scholar
Mathis, J.S. & Odell, A.P. 1973, ApJ, 180, 517 CrossRefGoogle Scholar
Merrill, P.W. 1922, ApJ, 56, 40 CrossRefGoogle Scholar
Morales, C., Orozco, V., Gómez, J.F., Trapero, J., Talavera, A., Bowyer, S., Edelstein, J., Korpela, E., Lampton, M., & Drake, J.J. 2001, ApJ, 552, 278 CrossRefGoogle Scholar
Odell, A.P. 1974, ApJ, 192, 417 CrossRefGoogle Scholar
Peterson, D.M., Hummel, C.A., Pauls, T.A., Armstrong, J.T., Benson, J.A., Gilbreath, G.C., Hindsley, R.B., Hutter, D.J., Johnston, K.J., Mozurkewich, D., & Schmitt, H.R. 2006, Nature, 440, 896 CrossRefGoogle Scholar
Riddle, R.L., Bagnuolo, W.G., & Gies, D.R. 2001, American Astronomical Society Meeting, 199Google Scholar
Shobbrook, R.R., Lomb, N.R., & Herbison, Evans, D. 1972, MNRAS, 156, 165 CrossRefGoogle Scholar
Smith, M.A. 1985a, ApJ, 297, 206 CrossRefGoogle Scholar
Smith, M.A. 1985b, ApJ, 297, 224 CrossRefGoogle Scholar
Struve, O., Sahade, J., Huang, S.-S., & Zebergs, V. 1958, ApJ, 128, 310 CrossRefGoogle Scholar