Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T14:33:28.432Z Has data issue: false hasContentIssue false

Microquasars: disk–jet coupling in stellar-mass black holes

Published online by Cambridge University Press:  01 August 2006

I. Félix Mirabel*
Affiliation:
European Southern Observatory, Alonso de Cordova 3107, Santiago, Chile email: fmirabel@eso.org
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Microquasars provide new insights into: 1) the physics of relativistic jets from black holes, 2) the connection between accretion and ejection, and 3) the physical mechanisms in the formation of stellar-mass black holes. Furthermore, the studies of microquasars in our Galaxy can provide in the future new insights on: 1) a large fraction of the ultraluminous X-ray sources in nearby galaxies, 2) gamma-ray bursts (GRBs) of long duration in distant galaxies, and 3) the physics in the jets of blazars. If jets in GRBs, microquasars and Active Galactic Nuclei (AGN) are due to a unique universal magnetohydrodynamic mechanism, synergy of the research on these three different classes of cosmic objects will lead to further progress in black hole physics and astrophysics.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Biretta, J. A., Junor, W., Livio, M. 2002, NewAR, 46, 239CrossRefGoogle Scholar
Dhawan, V., Mirabel, I.F., Rodríguez, L.F. 2000, ApJ, 543, 373CrossRefGoogle Scholar
Eikenberry, S. S., Matthews, K., Morgan, E. H., Remillard, R. A., Nelson, R. W. 1998, ApJ, 494, L61CrossRefGoogle Scholar
Fender, R. 2002, Lecture Notes in Physics, 589, 101CrossRefGoogle Scholar
Marscher, A. P., Jorstad, S. G., Gómez, J. L. et al. 2002, Nature, 417, 625CrossRefGoogle Scholar
Mirabel, I. F., Dhawan, V., Chaty, S. et al. 1998, A&A, 330, L9Google Scholar
Mirabel, I. F. & Rodríguez, L. F. 1998, Nature, 392, 673CrossRefGoogle Scholar
Mirabel, I. F. & Rodríguez, L. F. 1999, ARAA, 37, 409CrossRefGoogle Scholar
Mirabel, I. F., Rodríguez, L. F., Cordier, B. et al. 1992, Nature, 358, 215CrossRefGoogle Scholar
Paredes, J. M. 2005, in Radio Astronomy from Karl Jansky to Microjansky, eds. Gurvits, L. I., Frey, S. & Rawlings, S. (EAS Publ. Ser.: Budapest), vol. 15, pp. 187206 (astro-ph/0402671)Google Scholar
van der Laan, H. 1966, Nature, 211, 1131CrossRefGoogle Scholar
Rees, M. J. 2003, in Future of Theoretical Physics and Cosmology, ed. Gibbons, G. W. et al. (Cambridge University Press: Cambridge), pp. 217235 (astro-ph/0401365)Google Scholar
Sams, B. J., Eckart, A., Sunyaev, R. 1998, Nature, 392, 673Google Scholar