Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-29T12:01:11.633Z Has data issue: false hasContentIssue false

Dynamos of giant planets

Published online by Cambridge University Press:  01 August 2006

F. H. Busse
Affiliation:
Institute of Physics, University of Bayreuth, D95440 Bayreuth, Germany email: busse@uni-bayreuth.de
R. Simitev
Affiliation:
Department of Mathematics, University of Glasgow, UK email: rs@maths.gl.ac.uk
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Possibilities and difficulties of applying the theory of magnetic field generation by convection flows in rotating spherical fluid shells to the Giant Planets are outlined. Recent progress in the understanding of the distribution of electrical conductivity in the Giant Planets suggests that the dynamo process occurs predominantly in regions of semiconductivity. In contrast to the geodynamo the magnetic field generation in the Giant Planets is thus characterized by strong radial conductivity variations. The importance of the constraint on the Ohmic dissipation provided by the planetary luminosity is emphasized. Planetary dynamos are likely to be of an oscillatory type, although these oscillations may not be evident from the exterior of the planets.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Ardes, M., Busse, F.H., & Wicht, J. 1997, Phys. Earth Plan. Int. 99, 55Google Scholar
Burke, B.F. & Franklin, K.L. 1955, J. Geophys. Res. 60, 213Google Scholar
Busse, F.H. 1970, ApJ 159, 629Google Scholar
Busse, F.H. 2002, Phys. Fluids 14, 1301Google Scholar
Busse, F.H. & Carrigan, C.R. 1976, Science 191, 81Google Scholar
Busse, F. H. & Simitev, R. 2004, J. Fluid Mech. 498, 23Google Scholar
Christensen, U.R., Aubert, J., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G.A., Grote, E., Honkura, Y., Jones, C., Kono, M., Matsushima, M., Sakuraba, A., Takahashi, F., Tilgner, A., Wicht, J., & Zhang, K. 2001, Phys. Earth Plan. Inter. 128, 25Google Scholar
Evonuk, M. & Glatzmaier, G.A. 1991, Icarus 181, 458Google Scholar
Glatzmaier, G.A. 1984, J. Comp. Phys. 55, 461Google Scholar
Holme, R. & Bloxham, J. 1996 J. Geophys. Res. 101, 2177Google Scholar
Lee, K.K.M., Benedetti, L.R., Jeanloz, R., Celliers, P.M., Eggert, J.H., Hicks, D.G., Moon, S.J., Mackinnon, A., Collins, G.W., Henry, E., Koenig, M., & Benuzzi-Mounaix, A. 2006, J. Chem. Phys. 125, 014701Google Scholar
Liu, J., Goldreich, P.M., & Stevenson, D.J. 2006, Icarus submittedGoogle Scholar
Nellis, W.J., Weir, S.T., & Mitchell, A.C. 1996, Science 273, 396Google Scholar
Ruzmaikin, A.A. & Starchenko, S.V. 1991, Icarus 93, 82Google Scholar
Simitev, R. & Busse, F.H. 2003, New J. Phys. 5, 97.1Google Scholar
Simitev, R. & Busse, F.H. 2005, J. Fluid Mech. 532, 355Google Scholar
Stanley, S. & Bloxham, J. 2004, Nature 428, 151Google Scholar
Tilgner, A. 1999, Int. J. Numer. Meth. Fluids 30, 713Google Scholar
Zhang, K. 1994, J. Fluid Mech. 268, 211Google Scholar