Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T19:30:45.305Z Has data issue: false hasContentIssue false

Convection-driven planetary dynamos

Published online by Cambridge University Press:  01 August 2006

Ulrich R. Christensen
Affiliation:
Max-Planck-Institut for Solar System Research, 37191 Katlenburg-Lindau, Germany email: Christensen@mps.mpg.de
Julien Aubert
Affiliation:
Institut de Physique du Globe de Paris, Paris, France email: aubert@ipgp.jussieu.fr
Peter Olson
Affiliation:
Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore MD, USA email: olson@jhu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Numerical simulations of convection-driven dynamos in rotating spherical shells are employed to better understand the observed strength and geometry of planetary magnetic fields. The model computations cannot be performed for realistic values of several of the control parameters. By varying parameters within the accessible range, it is possible to derive scaling laws for the magnetic field strength and the flow velocity in the dynamo region and for the dipole moment. Our scaling laws suggest that, even though diffusivities are far too large in the models, diffusive processes do not play an important role, just as in planetary cores. Extrapolating the scaling laws to planetary values of the control parameters leads to reasonable predictions for the field strength in the dynamo region and fits the observed dipole moments decently, in particular in the cases of Earth and Jupiter. For Mercury, which does not fit well when applying the scaling laws in a straightforward way, a model is proposed in which the upper part of the fluid core is stably stratified and the dynamo operates only in its deep regions. The time-varying dynamo field must diffuse through the stable region and is attenuated by the skin effect. The model explains why Mercury has a very weak but probably dipole-dominated magnetic field.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2007

References

Christensen, U.R. 2002, J. Fluid Mech. 470, 115CrossRefGoogle Scholar
Christensen, U.R. 2006, Nature 444, 1056Google Scholar
Christensen, U., Olson, P. & Glatzmaier, G.A. 1999, Geophys. J. Int. 138, 393CrossRefGoogle Scholar
Christensen, U. R. & Tilgner, A. 2004, Nature 439, 169Google Scholar
Christensen, U. R. & Aubert, J. 2006, Geophys. J. Int. 166, 97Google Scholar
Glatzmaier, G.A. 2002, Annu. Rev. Earth Planet. Sci. 30, 237Google Scholar
Hauck, S.A., Dombard, A.J., Phillips, R.J. & Solomon, S.C. 2004. Earth Planet. Sci. Lett. 222, 713Google Scholar
Heimpel, M.H., Aurnou, J.M., Al-Shamali, F.M. & Gomez Perez, N. 2004. Earth Planet. Sci. Lett. 236, 542Google Scholar
Kono, M. & Roberts, P.H. 2002, Rev. Geophys. 40, doi: 10.1029/2000RG000102Google Scholar
Kutzner, C. & Christensen, U. R. 2002. Phys. Earth Planet. Int. 131, 29Google Scholar
Kutzner, C. & Christensen, U. R. 2004. Geophys. J. Int. 157, 1108Google Scholar
Ness, N.F. 1979. Phys. Earth Planet. Inter. 20, 209Google Scholar
Olson, P. & Christensen, U. R. 2002. Geophys. J. Int. 151, 809Google Scholar
Olson, P. & Christensen, U. R. 2006. Earth Planet. Sci. Lett. 250, 561CrossRefGoogle Scholar
Starchenko, S.V. & Jones, C.A. 2002, Icarus 157, 426CrossRefGoogle Scholar
Stanley, S., Bloxham, J., Hutchinson, W.E. & Zuber, M.T. 2005, Earth Planet. Sci. Lett. 234, 27Google Scholar
Sreenivasan, B. & Jones, C.A. 2006, Geophys. J. Int. 164, 467CrossRefGoogle Scholar
Stevenson, D.J. 1979, Geophys. Astrophys. Fluid Dyn. 12, 139Google Scholar
Stevenson, D.J. 2003, Earth Planet. Sci. Lett. 208, 1Google Scholar
Stieglitz, R. & Müller, U. 2001, Phys. Fluids 13, 561Google Scholar
Takahashi, F. & Matsushima, A. 2005, Phys. Fluids 17, 076601Google Scholar
Takahashi, F. & Matsushima, M. 2006, Geophys. Res. Lett. 33, doi:1029/2006GL02579Google Scholar
Takahashi, F., Matsushima, M. & Honkura, Y. 2005, Science 309, 459CrossRefGoogle Scholar
Wicht, J. & Olson, P. 2004, Geochem. Geophys. Geosyst. 5, doi:10.1029/2003GC000602CrossRefGoogle Scholar
Zatman, S. & Bloxham, J. 1997, Nature 388, 760Google Scholar