Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-18T07:22:03.874Z Has data issue: false hasContentIssue false

Prevalence of Toxoplasma gondii in localized populations of Apodemus sylvaticus is linked to population genotype not to population location

Published online by Cambridge University Press:  01 December 2014

J. BAJNOK
Affiliation:
Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
K. BOYCE
Affiliation:
Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
M. T. ROGAN
Affiliation:
Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
P. S. CRAIG
Affiliation:
Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
Z. R. LUN
Affiliation:
Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK Center for Parasitic Organisms, State Key Laboratory of Biocontrol, School of Life Sciences, and Key Laboratory of Tropical Disease Control of the Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510275, China
G. HIDE*
Affiliation:
Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK Biomedical Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK
*
*Corresponding author. Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK. E-mail: g.hide@salford.ac.uk

Summary

Toxoplasma gondii is a globally distributed parasite infecting humans and warm-blooded animals. Although many surveys have been conducted for T. gondii infection in mammals, little is known about the detailed distribution in localized natural populations. In this study, host genotype and spatial location were investigated in relation to T. gondii infection. Wood mice (Apodemus sylvaticus) were collected from 4 sampling sites within a localized peri-aquatic woodland ecosystem. Mice were genotyped using standard A. sylvaticus microsatellite markers and T. gondii was detected using 4 specific PCR-based markers: SAG1, SAG2, SAG3 and GRA6 directly from infected tissue. Of 126 wood mice collected, 44 samples were positive giving an infection rate of 34·92% (95% CI: 27·14–43·59%). Juvenile, young adults and adults were infected at a similar prevalence, respectively, 7/17 (41·18%), 27/65 (41·54%) and 10/44 (22·72%) with no significant age-prevalence effect (P = 0·23). Results of genetic analysis of the mice showed that the collection consists of 4 genetically distinct populations. There was a significant difference in T. gondii prevalence in the different genotypically derived mouse populations (P = 0·035) but not between geographically defined populations (P = 0·29). These data point to either a host genetic/family influence on parasite infection or to parasite vertical transmission.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Afonso, E., Poulle, M. L., Lemoine, M., Villena, I., Aubert, D. and Gilot-Fromont, E. (2007). Prevalence of Toxoplasma gondii in small mammals from the Ardennes region, France. Folia Parasitologica (Praha) 54, 313314.CrossRefGoogle ScholarPubMed
Beverley, J. K. A. (1959). Congenital transmission of toxoplasmosis through successive generation of mice. Nature 183, 13481349.CrossRefGoogle ScholarPubMed
Boyce, K., Hide, G., Craig, P. S., Harris, P. D., Reynolds, C., Pickles, A. and Rogan, M. T. (2012). Identification of a new species of digenean Notocotylus malhamensis n. sp. (Digenea: Notocotylidae) from the bank vole (Myodes glareolus) and the field vole (Microtus agrestis). Parasitology 139, 16301639.CrossRefGoogle Scholar
Boyce, K., Hide, G., Craig, P. S., Reynolds, C., Hussain, M., Bodell, A. J., Bradshaw, H., Pickles, A. and Rogan, M. T. (2013). A molecular and ecological analysis of the trematode Plagiorchis elegans in the wood mouse Apodemus sylvaticus from a periaquatic ecosystem in the UK. Journal of Helminthology 19, 111.Google Scholar
Dabritz, H. A., Miller, M. A., Gardner, I. A., Packham, A. E., Atwill, E. R. and Conrad, P. A. (2008). Risk factors for Toxoplasma gondii infection in wild rodents from central coastal California and a review of T. gondii prevalence in rodents. Journal of Parasitology 94, 675683.CrossRefGoogle Scholar
Dodd, N. S., Lord, J. S., Jehle, R., Parker, S., Parker, F., Brooks, D. R. and Hide, G. (2014). Toxoplasma gondii: prevalence in species and genotypes of British bats (Pipistrellus pipistrellus and P. pygmaeus). Experimental Parasitology 139, 611.CrossRefGoogle ScholarPubMed
Dubey, J. P. (2010). Toxoplasmosis of Animals and Humans, 2nd Edn. CRC Press, Boca Raton, Florida, USA.Google Scholar
Dubey, J. P. and Jones, J. L. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal of Parasitology 38, 12571278.CrossRefGoogle ScholarPubMed
Dubey, J. P., Weigel, R. M., Siegel, A. M., Thulliez, P., Kitron, U. D., Mitchell, M. A., Mannelli, A., Mateuspinillia, N. E., Shen, S. K., Kwok, O. C. H. and Todd, K. S. (1995). Sources and reservoirs of Toxoplasma gondii infection on 47 swine farms in Illinois. Journal of Parasitology 81, 723729.CrossRefGoogle ScholarPubMed
Dubey, J. P., Shen, S. K., Kwok, O. C. and Thulliez, P. (1997). Toxoplasmosis in rats (Rattus norvegicus): congenital transmission to first and second generation offspring and isolation Toxoplasma gondii from seronegative rats. Parasitology 115, 914.CrossRefGoogle ScholarPubMed
Duncanson, P., Terry, R. S., Smith, J. E. and Hide, G. (2001). High levels of congenital transmission of Toxoplasma gondii in a commercial sheep flock. International Journal for Parasitology 31, 16991703.CrossRefGoogle Scholar
Elsaid, M. M. A., Martins, M. S., Frézard, F., Braga, E. M. and Vitor, R. W. A. (2001). Vertical toxoplasmosis in a murine model. Protection after immunization with antigens of Toxoplasma gondii incorporated into liposomes. Memoirs Institute Oswaldo Cruz 96, 99104.CrossRefGoogle Scholar
Evanno, G., Regnaut, S. and Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology 14, 26112620.CrossRefGoogle ScholarPubMed
Franti, C. E., Riemann, H. P., Behmeyer, D. E., Suther, D., Howarth, J. A. and Ruppanner, R. (1976). Prevalence of Toxoplasma gondii antibodies in wild and domestic animals in northern California. Journal of the American Veterinary Medical Association 169, 901906.Google ScholarPubMed
Frenkel, J. K., Dubey, J. P. and Miller, N. L. (1970). Toxoplasma gondii in cats: fecal stages identified as coccidian oocysts. Science 167, 893896.CrossRefGoogle ScholarPubMed
Fuehrer, H. P., Bloschl, I., Siehs, C. and Hassl, A. (2010). Detection of Toxoplasma gondii, Neospora caninum, and Encephalitozoon cuniculi in the brains of common voles (Microtus arvalis) and water voles (Arvicola terrestris) by gene amplification techniques in western Austria (Vorarlberg). Parasitology Research 107, 469473.CrossRefGoogle ScholarPubMed
Fuentes, I., Rubio, J. M., Ramírez, C. and Alvar, J. (2001). Genotypic characterization of Toxoplasma gondii strains associated with human toxoplasmosis in Spain: direct analysis from clinical samples. Journal of Clinical Microbiology 39, 15661570.CrossRefGoogle ScholarPubMed
Gelanew, T., Kuhls, K., Hurissa, Z., Weldegebreal, T., Hailu, W., Kassahun, A., Tamrat, A., Abebe, T., Hailu, A. and Schönian, G. (2010). Inference of population structure of Leishmania donovani strains isolated from different Ethiopian visceral leishmaniasis endemic areas. PLoS Neglected Tropical Diseases 4, e889.CrossRefGoogle ScholarPubMed
Gotteland, C., Chaval, Y., Villena, I., Galan, M., Geers, R., Aubert, D., Poulle, M. L., Charbonnel, N. and Gilot-Fromont, E. (2014). Species or local environment, what determines the infection of rodents by Toxoplasma gondii? Parasitology 141, 259268.CrossRefGoogle ScholarPubMed
Grigg, M. E., Ganatra, J., Boothroyd, J. C. and Margolis, T. P. (2001). Unusual abundance of atypical strains associated with human ocular toxoplasmosis. Journal of Infectious Diseases 184, 633639.CrossRefGoogle ScholarPubMed
Hejlicek, K. and Literak, I. (1998). Long-term study of Toxoplasma gondii prevalence in small mammals (Insectivora and Rodentia). Folia Zoologica 47, 93101.Google Scholar
Hejlicek, K., Literak, I. and Nezval, J. (1997). Toxoplasmosis in wild mammals from the Czech Republic. Journal of Wildlife Diseases 33, 480485.CrossRefGoogle ScholarPubMed
Herrmann, D. C., Maksimov, P., Maksimov, A., Sutor, A., Schwarz, S., Jaschke, W., Schliephake, A., Denzin, N., Conraths, F. J. and Schares, G. (2012 ). Toxoplasma gondii in foxes and rodents from the German Federal States of Brandenburg and Saxony – Anhalt: seroprevalence and genotypes. Veterinary Parasitology 185, 7885.CrossRefGoogle ScholarPubMed
Hide, G., Morley, E. K., Hughes, J. M., Gerwash, O., Elmahaishi, M. S., Elmahaishi, K. H., Thomasson, D., Wright, E. A., Williams, R. H., Murphy, R. G. and Smith, J. E. (2009). Evidence for high levels of vertical transmission in Toxoplasma gondii . Parasitology 136, 18771885.CrossRefGoogle ScholarPubMed
Higgs, S. and Nowell, F. (2000). Population biology of Eimeria (protozoa: Apicomplexa) in Apodemus sylvaticus: a capture study. Parasitology 120, 355363.CrossRefGoogle Scholar
Howe, D. K., Honore, S., Derouin, F. and Sibley, L. D. (1997). Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis. Journal of Clinical Microbiology 35, 14111414.CrossRefGoogle ScholarPubMed
Hughes, J. M., Williams, R. H., Morley, E. K., Cook, D. A. N., Terry, R. S., Murphy, R. G., Smith, J. E. and Hide, G. (2006). The Prevalence of Neospora caninum and co-infection with Toxoplasma gondii by PCR analysis in naturally occurring mammal populations. Parasitology 132, 2936.CrossRefGoogle ScholarPubMed
Hughes, J. M., Thomasson, D., Craig, P. S., Georgin, S., Pickles, A. and Hide, G. (2008). Neospora caninum: detection in wild rabbits and investigation of co-infection with Toxoplasma gondii by PCR analysis. Experimental Parasitology 120, 255260.CrossRefGoogle ScholarPubMed
Hutchison, W. M. (1965). Experimental transmission of Toxoplasma gondii . Nature 206, 961962.CrossRefGoogle ScholarPubMed
Innes, E. A., Bartley, P. M., Buxton, D. and Katzer, F. (2009). Ovine toxoplasmosis. Parasitology 136, 18871894.CrossRefGoogle ScholarPubMed
Jackson, M. H., Hutchison, W. M. and Siim, J. C. (1986). Toxoplasmosis in a wild rodent population of Central Scotland and a possible explanation of the mode of transmission. Journal of Zoology 209, 549557.CrossRefGoogle Scholar
Jeon, S. H. and Yong, T. S. (2000). Serological observation of Toxoplasma gondii prevalence in Apodemus agrarius, a dominant species of field rodents in Korea. Yonsei Medical Journal 41, 491496.CrossRefGoogle ScholarPubMed
Khan, A., Su, C., German, M., Storch, G. A., Clifford, D. B. and Sibley, L. D. (2005). Genotyping of Toxoplasma gondii strains from immunocompromised patients reveals high prevalence of type I strains. Journal of Clinical Microbiology 43, 58815887.CrossRefGoogle ScholarPubMed
Kijlstra, A., Meerburg, B., Cornelissen, J., De Craeye, S., Vereijken, P. and Jongert, E. (2008). The role of rodents and shrews in the transmission of Toxoplasma gondii to pigs. Veterinary Parasitology 156, 183190.CrossRefGoogle ScholarPubMed
Li, Z., Zhao, Z. J., Zhu, X. Q., Ren, Q. S., Nie, F. F., Gao, J. M., Gao, X. J., Yang, T. B., Zhou, W. L., Shen, J. L., Wang, Y., Lu, F. L., Chen, X. G., Hide, G., Ayala, F. J. and Lun, Z. R. (2012). Differences in iNOS and arginase expression and activity in the macrophages of rats are responsible for the resistance against T. gondii infection. PLoS ONE 7, e35834.CrossRefGoogle ScholarPubMed
Lilue, J., Muller, U. B., Steinfeld, T. and Howard, J. C. (2013). Reciprocal virulence and resistance polymorphism in the relationship between Toxoplasma gondii and the house mouse. Elife 2, e01298.CrossRefGoogle ScholarPubMed
Makova, K. D., Patton, J. C., Krysanov, E. Yu., Chesser, R. K. and Baker, R. J. (1998). Microsatellite markers in wood mouse and striped field mouse (genus Apodemus). Molecular Ecology 7, 247249.Google ScholarPubMed
Marshall, P. A., Hughes, J. M., Williams, R. H., Smith, J. E., Murphy, R. G. and Hide, G. (2004). Detection of high levels of congenital transmission of Toxoplasma gondii in natural urban populations of Mus domesticus . Parasitology 128, 3942.CrossRefGoogle ScholarPubMed
Meerburg, B. G., De Craeye, S., Dierick, K. and Kijlstra, A. (2012). Neospora caninum and Toxoplasma gondii in brain tissue of feral rodents and insectivores caught on farms in the Netherlands. Veterinary Parasitology 184, 317320.CrossRefGoogle ScholarPubMed
Morger, J., Bajnok, J., Boyce, K., Craig, P. S., Rogan, M. T., Lun, Z. R., Hide, G. and Tschirren, B. (2014). Naturally occurring Toll-like receptor 11 (TLR11) and Toll-like receptor 12 (TLR12) polymorphisms are not associated with Toxoplasma gondii infection in wild wood mice. Infection, Genetics and Evolution 26, 180184.CrossRefGoogle Scholar
Morley, E. K., Williams, R. H., Hughes, J. M., Terry, R. S., Duncanson, P., Smith, J. E. and Hide, G. (2005). Significant familial differences in the frequency of abortion and Toxoplasma gondii infection within a flock of Charollais sheep. Parasitology 131, 181185.CrossRefGoogle ScholarPubMed
Morley, E. K., Williams, R. H., Hughes, J. M., Thomasson, D., Terry, R. S., Duncanson, P., Smith, J. E. and Hide, G. (2008). Evidence that primary infection of Charollais sheep with Toxoplasma gondii may not prevent foetal infection and abortion in subsequent lambings. Parasitology 135, 169173.CrossRefGoogle Scholar
Murphy, R. G., Williams, R. H., Hughes, J. M., Hide, G., Ford, N. J. and Oldbury, D. J. (2008). The urban house mouse (Mus domesticus) as a reservoir of infection for the human parasite Toxoplasma gondii: an unrecognised public health issue? International Journal of Environmental Health Research 18, 177185.CrossRefGoogle ScholarPubMed
Owen, M. R. and Trees, A. J. (1998). Vertical transmission of Toxoplasma gondii from chronically infected house (Mus musculus) and field (Apodemus sylvaticus) mice determined by polymerase chain reaction. Parasitology 116, 299304.CrossRefGoogle ScholarPubMed
Pritchard, J. K., Stephens, M. and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945959.CrossRefGoogle ScholarPubMed
Savva, D., Morris, J. C., Johnson, J. D. and Holliman, R. E. (1990). Polymerase chain reaction for detection of Toxoplasma gondii . Journal of Medical Microbiology 32, 2531.CrossRefGoogle ScholarPubMed
Shwab, E. K., Zhu, X. Q., Majumdar, D., Pena, H. F., Gennari, S. M., Dubey, J. P. and Su, C. (2013). Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology 5, 453461.Google Scholar
Smith, D. D. and Frenkel, J. K. (1995). Prevalence of antibodies to Toxoplasma gondii in wild mammals of Missouri and East Central Kansas – biologic and ecologic considerations of transmission. Journal of Wildlife Diseases 31, 1521.CrossRefGoogle Scholar
Spisak, F., Turcekova, L., Reiterova, K., Spilovska, S. and Dubinsky, P. (2010). Prevalence estimation and genotypization of Toxoplasma gondii in goats. Biologia 65, 670674.CrossRefGoogle Scholar
Stahl, W., Sekiguchi, M. and Kaneda, Y. (2002). Cerebellar anomalies in congenital murine toxoplasmosis. Parasitology Research 88, 507512.CrossRefGoogle ScholarPubMed
Su, C., Zhang, X. and Dubey, J. P. (2006). Genotyping of Toxoplasma gondii by multilocus PCR-RFLP markers: a high resolution and simple method for identification of parasites. International Journal of Parasitology 36, 841848.CrossRefGoogle ScholarPubMed
Tenter, A. M., Heckeroth, A. R. and Weiss, L. M. (2000). Toxoplasma gondii: from animals to humans. International Journal for Parasitology 30, 12171258.CrossRefGoogle ScholarPubMed
Terry, R. S., Smith, J. E., Duncanson, P. and Hide, G. (2001). MGE-PCR: a novel approach to the analysis of Toxoplasma gondii strain differentiation using mobile genetic elements. International Journal for Parasitology 31, 155161.CrossRefGoogle Scholar
Thomasson, D., Wright, E. A., Hughes, J. M., Dodd, N. S., Cox, A. P., Boyce, K., Gerwash, O., Abushahma, M., Lun, Z. R., Murphy, R. G., Rogan, M. T. and Hide, G. (2011). Prevalence and co-infection of Toxoplasma gondii and Neospora caninum in Apodemus sylvaticus in an area relatively free of cats. Parasitology 138, 11171123.CrossRefGoogle Scholar
Van Oosterhout, C., Hutchinson, W., Wills, D. and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.CrossRefGoogle Scholar
Vujanić, M., Ivović, V., Kataranovski, M., Nikolić, A., Bobić, B., Klun, I., Villena, I., Kataranovski, D. and Djurković-Djaković, O. (2012). Toxoplasmosis in naturally infected rodents in Belgrade, Serbia. Vector Borne Zoonotic Diseases 11, 12091211.CrossRefGoogle Scholar
Wang, J. (2004). Sibship reconstruction from genetic data with typing errors. Genetics 166, 19631979.CrossRefGoogle ScholarPubMed
Williams, R. H., Morley, E. K., Hughes, J. M., Duncanson, P., Terry, R. S., Smith, J. E. and Hide, G. (2005). High levels of congenital transmission of Toxoplasma gondii in longitudinal and cross-sectional studies on sheep farms provides evidence of vertical transmission in ovine hosts. Parasitology 130, 301307.CrossRefGoogle ScholarPubMed
Yin, C. C., He, Y., Zhou, D. H., Yan, C., He, X. H., Wu, S. M., Zhou, Y., Yuan, Z. G., Lin, R. Q. and Zhu, X. Q. (2010). Seroprevalence of Toxoplasma gondii in rats in southern China. Journal of Parasitology 96, 12331234.CrossRefGoogle ScholarPubMed
Zhang, S. Y., Jiang, S. F., He, Y. Y., Pan, C. E., Zhu, M. and Wei, M. X. (2004). Serologic prevalence of Toxoplasma gondii in field mice, Microtus fortis, from Yuanjiang, Hunan province, People's Republic of China. Journal of Parasitology 90, 437438.CrossRefGoogle ScholarPubMed
Zhao, Z. J., Zhang, J., Wei, J., Li, Z., Wang, T., Yi, S. Q., Shen, J. L., Yang, T. B., Hide, G. and Lun, Z. R. (2013). Lower expression of inducible nitric oxide synthase and higher expression of arginase in rat alveolar macrophages are linked to their susceptibility to Toxoplasma gondii infection. PLoS ONE 8, e63650.Google ScholarPubMed