Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-18T08:23:53.277Z Has data issue: false hasContentIssue false

A New Silicon Drift Detector for High Spatial Resolution STEM-XEDS: Performance and Applications

Published online by Cambridge University Press:  29 July 2014

Patrick J. Phillips*
Affiliation:
Department of Physics, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL 60607, USA
Tadas Paulauskas
Affiliation:
Department of Physics, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL 60607, USA
Neil Rowlands
Affiliation:
Oxford Instruments NanoAnalysis, Halifax Road, High Wycombe, HP12 3SE, UK
Alan W. Nicholls
Affiliation:
Research Resources Center, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL 60607, USA
Ke-Bin Low
Affiliation:
BASF, 25 Middlesex/Essex Turnpike, Iselin, NJ 08830, USA
Santokh Bhadare
Affiliation:
Oxford Instruments NanoAnalysis, Halifax Road, High Wycombe, HP12 3SE, UK
Robert F. Klie
Affiliation:
Department of Physics, University of Illinois at Chicago, 845 W Taylor Street, Chicago, IL 60607, USA
*
*Corresponding author. Email: pjphil@uic.edu
Get access

Abstract

A newly designed, 100 mm2, silicon drift detector has been installed on an aberration-corrected scanning transmission electron microscope equipped with an ultra-high resolution pole piece, without requiring column modifications. With its unique, windowless design, the detector’s active region is in close proximity to the sample, resulting in a dramatic increase in count rate, while demonstrating an increased sensitivity to low energy X-rays and a muted tilt dependence. Numerous examples of X-ray energy dispersive spectrometry are presented on relevant materials such as AlxGa1−xN nanowires, perovskite oxides, and polycrystalline CdTe thin films, across both varying length scales and accelerating voltages.

Type
FEMMS Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, L.J., D’Alfonso, A.J., Freitag, B. & Klenov, D.O. (2012). Chemical mapping at atomic resolution using energy-dispersive x-ray spectroscopy. MRS Bull 37(1), 4752.Google Scholar
Carnevale, S.D., Kent, T.F., Phillips, P.J., Mills, M.J., Rajan, S. & Myers, R.C. (2012). Polarization-induced pn diodes in wide-band-gap nanowires with ultraviolet electroluminescence. Nano Lett 12, 915920.CrossRefGoogle ScholarPubMed
Carnevale, S.D., Kent, T.F., Selcu, C., Phillips, P.J., Sarwar, A. T. M. G., Klie, R.F. & Myers, R.C. (2013). Mixed polarity in polarization-induced p-n junction nanowire light-emitting diodes. Nano Lett 13(7), 30293035.CrossRefGoogle ScholarPubMed
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope , 3rd ed. New York: Springer.CrossRefGoogle Scholar
Huang, P.Y., Ruiz-Vargas, C.S., van der Zande, A.M., Whitney, W.S., Levendorf, M.P., Kevek, J.W., Garg, S., Alden, J.S., Hustedt, C.J., Zhu, Y., Park, J., McEuen, P.L. & Muller, D.A. (2011). Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469, 389392.CrossRefGoogle ScholarPubMed
Kirkland, E.J., Loane, R.F. & Silcox, J. (1987). Simulation of annular dark field STEM images using a modified multislice method. Ultramicroscopy 23, 7796.Google Scholar
Klie, R.F., Qiao, Q., Paulauskas, T., Gulec, A., Rebola, A., Ogut, S., Prange, M.P., Idrobo, J.C., Pantelides, S.T., Kolesnik, S., Dabrowski, B., Ozdemir, M., Boyraz, C., Mazumdar, D. & Gupta, A. (2012). Observations of Co4+ in a higher spin state and the increase in the Seebeck coefficient of thermoelectric Ca3Co4O9 . Phys Rev Lett 108, 196601.CrossRefGoogle Scholar
Li, C., Poplawsky, J., Wu, Y., Lupini, A.R., Mouti, A., Leonard, D.N., Paudel, N., Jones, K., Yin, W., Al-Jassim, M., Yan, Y. & Pennycook, S.J. (2013). From atomic structure to photovolatic properties in CdTe solar cells. Ultramicroscopy 134, 113125.CrossRefGoogle Scholar
Loane, R.F., Xu, P. & Silcox, J. (1992). Incoherent imaging of zone axis crystals with ADF STEM. Ultramicroscopy 40, 121138.CrossRefGoogle Scholar
Phillips, P.J., Carnevale, S.D., Kumar, R., Myers, R.C. & Klie, R.F. (2013). Full-scale characterization of uvled Al x Ga1−x N nanowires via advanced electron microscopy. ACS Nano 7(6), 50455051.CrossRefGoogle Scholar
Qiao, Q., Klie, R.F., Öğüt, S. & Idrobo, J.C. (2012). Atomic and electronic structures of SrTiO3/GaAs heterointerfaces: An 80-kV atomic-resolution electron energy-loss spectroscopy study. Phys Rev B 85, 165406.CrossRefGoogle Scholar
Treacy, M.M.J. (1982). Optimising atomic number contrast in annular dark field images of thin films in the scanning transmission electron microscope. J Microsc Spectrosc Electron 7, 511523.Google Scholar
Triboulet, R. & Siffert, P. (2010). CdTe and Related Compounds: Physics, Defects, Hetero- and Nano-Structures, Crystal Growth, Surfaces and Applications. Oxford, UK: Elsevier.Google Scholar
Zaluzec, N.J. (2013). Direct comparison of X-ray detector solid angles in analytical electron microscopes. Microsc Microanal 19(Suppl 2), 12621263.Google Scholar
Zhou, W., Lee, J., Nanda, J., Pantelides, S.T., Pennycook, S.J. & Idrobo, J.C. (2012). Atomically localized plasmon enhancement in monlayer graphene. Nat Nanotechnol 7, 161165.Google Scholar