Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-18T23:39:02.676Z Has data issue: false hasContentIssue false

Facility Implementation and Comparative Performance Evaluation of Probe-Corrected TEM/STEM with Schottky and Cold Field Emission Illumination

Published online by Cambridge University Press:  05 March 2013

Yan Xin*
Affiliation:
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
John Kynoch
Affiliation:
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
Ke Han
Affiliation:
National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310, USA
Zhiyong Liang
Affiliation:
High Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Peter J. Lee
Affiliation:
Applied Superconductor Center, Florida State University, Tallahassee, FL 32310, USA
David C. Larbalestier
Affiliation:
Applied Superconductor Center, Florida State University, Tallahassee, FL 32310, USA
Yi-Feng Su
Affiliation:
High Performance Materials Institute, FAMU-FSU College of Engineering, Tallahassee, FL 32310, USA
Kohei Nagahata
Affiliation:
JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960, USA
Toshihiro Aoki
Affiliation:
JEOL USA Inc., 11 Dearborn Road, Peabody, MA 01960, USA
Paolo Longo
Affiliation:
Gatan, Inc., Pleasanton, CA 94588, USA
*
*Corresponding author. E-mail: xin@magnet.fsu.edu
Get access

Abstract

We report the installation and performance evaluation of a probe aberration-corrected high-resolution JEOL JEM-ARM200F transmission electron microscope (TEM). We provide details on construction of the room that enables us to obtain scanning transmission electron microscope (STEM) data without any evident distortions/noise from the external environment. The microscope routinely delivers expected performance. We show that the highest STEM spatial resolution and energy resolution achieved with this microscope are 0.078 nm and 0.34 eV, respectively. We report a direct comparative evaluation of the performance of this microscope with a Schottky thermal field-emission gun versus a cold field-emission gun. Cold field-emission illumination improves spatial resolution of the high current probe for analytical spectroscopy, the TEM information limit, and the electron energy resolution compared to the Schottky thermal field-emission source.

Type
Software, Techniques, and Equipment Development
Copyright
Copyright © Microscopy Society of America 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blom, D.A., Allard, L.F., Mishina, S. & O'Keefe, M.A. (2006). Early results from an aberration-corrected JEOL 2200FS STEM/TEM at Oak Ridge National Laboratory. Microsc Microanal 12, 483491.CrossRefGoogle ScholarPubMed
Lichte, H., Schulze, D., Lehmann, M., Just, H., Erabi, T., Furst, P., Gobel, J., Hasenpusch, A. & Dietz, P. (2000). The Triebenberg Laboratory—Designed for highest resolution electron microscopy and holography. EUREM 12, 11631164.Google Scholar
Longo, P. (2011). The use of MLLS fitting approach to resolve overlapping edges in the EELS spectrum at the atomic level. Applications Note. Pleasanton, CA: Gatan Inc. Available at http://www.gatan.com/files/PDF/Use_of_MLLS_fitting_EELS_FL.pdf.Google Scholar
Muller, D.A., Kirkland, E.J., Thomas, M.G., Grazul, J.L., Fitting, L. & Weyland, M. (2006). Room design for high-performance electron microscopy. Ultramicorscopy 106, 10331040.CrossRefGoogle ScholarPubMed
O'Keefe, M.A., Nelson, E.C. & Wang, Y.C. (2001). Sub-ångström resolution of atomistic structures below 0.8 A. Philos Mag B 81, 18611878.CrossRefGoogle Scholar
O'Keefe, M.A., Tiemeijer, P.C. & Sidorov, M.V. (2002). Estimation of the electron beam energy spread for TEM information limit. 60th Ann. Proc. MSA, Quebec, Canada. LBNL-49641. Berkeley, CA: Lawrence Berkeley National Laboratory. Google Scholar
O'Keefe, M.A., Turner, J.H., Musante, J.A., Hetherington, C.J.D., Cullis, A.G., Carragher, B., Jenkins, R., Milgrim, J., Milligan, R.A., Potter, C.S., Allard, L.F., Blom, D.A., Degenhardt, L. & Sides, W.H. (2004). Laboratory design for high-performance electron microscopy. Microsc Today 12, 814.CrossRefGoogle Scholar
Qian, W., Scheinfein, M.R. & Spence, J.C.H. (1993). Brightness measurements of nanometer-sized field-emission-electron sources. J Appl Phys 73, 70417045.CrossRefGoogle Scholar
Spence, C.J.H. & Zuo, J.M. (1992). Electron Microdiffraction. New York: Plenum.CrossRefGoogle Scholar
Thomas, P. (2006). Advanced techniques for spectral mapping. Knowhow 14. Pleasanton, CA: Gatan Inc. Available at http://www.gatan.com/resources/knowhow/kh14-spectral.php.Google Scholar
Wen, J.G., Mabon, J., Lei, C.H., Burdin, S., Sammann, E., Petrov, I., Shah, A.B., Chobpattana, V., Zhang, J., Ran, K., Zuo, J.M., Mishina, S. & Aoki, T. (2010). The formation and utility of sub-Angstrom to nanometer-sized electron probes in the aberration-corrected transmission electron microscope at the University of Illinois. Microsc Microanal 16, 183193.CrossRefGoogle ScholarPubMed
Zhu, Y. & Wall, J. (2008). Aberration-corrected electron microscope at Brookhaven National laboratory. Adv Imag Electron Phys 153, 481523.CrossRefGoogle Scholar