Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-29T01:15:12.963Z Has data issue: false hasContentIssue false

Automatic scaling of polar ionograms

Published online by Cambridge University Press:  23 September 2011

Carlo Scotto
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy Doctoral School in Polar Sciences, University of Siena, Via del Laterino 8, 53100 Siena, Italy
Michael Pezzopane*
Affiliation:
Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy
*
*corresponding author: michael.pezzopane@ingv.it

Abstract

The Istituto Nazionale di Geosifica e Vulcanologia (INGV) software for automatic scaling of ionograms (Autoscala) was improved by introducing a system to identify D region absorption events, spread-F condition (frequency spreading in the F region), and Z-ray propagation. The algorithm was applied to a series of ionograms recorded by the AIS-INGV (Advanced Ionospheric Sounder-INGV) ionosonde installed at the Mario Zucchelli Station (74.7°S, 164.1°E), Terra Nova Bay, Antarctica. Critical cases are shown to illustrate the behaviour of the software.

Type
Physical Sciences
Copyright
Copyright © Antarctic Science Ltd 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bowman, G.G. 1960. Triple splitting with the F2-region of the ionosphere at high and mid-latitudes. Planetary and Space Science, 2, 214222.CrossRefGoogle Scholar
Davies, K. 1990. Ionospheric radio. London: Peter Peregrinus, 580 pp.CrossRefGoogle Scholar
Ding, Z., Ning, B., Wan, W.Liu, L. 2007. Automatic scaling of F2-layer parameters from ionograms based on the empirical orthogonal function (EOF) analysis of ionospheric electron density. Earth, Planets and Space, 59, 5158.Google Scholar
Fox, M.W.Blundell, C. 1989. Automatic scaling of digital ionograms. Radio Science, 24, 747761.Google Scholar
Igi, S., Nozaki, K., Nagayama, M., Ohtani, A., Kato, H.Igarashi, K. 1993. Automatic ionogram processing systems in Japan. In Wilkinson, P., ed. Ionosondes and ionosonde networks. Proceedings of the XXIV General Assembly of the International Union of Radio Science, Kyoto, Japan, 25 August–2 September, 1993. Boulder, CO: WDC-A STP Upper Atmosphere and Geophysics Series, 104.Google Scholar
Nekrasov, B.Y., Shirochkov, A.V.Shumilov, I.A. 1982. Investigation of the irregular structure of the polar ionosphere using oblique incidence soundings. Journal of Atmospheric and Terrestrial Physics, 44, 769772.Google Scholar
Papagiannis, M.D.Miller, D.L. 1969. Ray-tracing of the Z-mode in a tilted layer ionosphere. Journal of Atmospheric and Terrestrial Physics, 31, 155165.CrossRefGoogle Scholar
Penndorf, R. 1962. Classification of spread-F ionograms. Journal of Atmospheric and Terrestrial Physics, 24, 771778.CrossRefGoogle Scholar
Pezzopane, M.Scotto, C. 2004. Software for the automatic scaling of critical frequency foF2 and MUF(3000)F2 from ionograms applied at the Ionospheric Observatory of Gibilmanna. Annals of Geophysics, 47, 17831790.Google Scholar
Pezzopane, M.Scotto, C. 2005. The INGV software for the automatic scaling of critical frequency foF2 and MUF(3000)F2 from ionograms: a comparison with the ARTIST system 4.01. Journal of Atmospheric and Solar Terrestrial Physics, 67, 10631073.CrossRefGoogle Scholar
Pezzopane, M.Scotto, C. 2007. The automatic scaling of critical frequency foF2 and MUF(3000)F2: a comparison between Autoscala and ARTIST 4.5 on Rome data. Radio Science, 42 , 10.1029/2006RS003581.CrossRefGoogle Scholar
Piggott, W.R.Rawer, K. 1972. URSI handbook of ionogram interpretation and reduction. Asheville, NC: US Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Data Service, Report UAG 23, 326 pp.Google Scholar
Reinisch, B.W.Huang, X. 1983. Automatic calculation of electron density profiles from digital ionograms 3. Processing of bottom side ionograms. Radio Science, 18, 477492.Google Scholar
Reinisch, B.W., Huang, X., Galkin, I.A., Paznukhov, V.Kozlov, A. 2005. Recent advances in real-time analysis of ionograms and ionospheric drift measurements with digisondes. Journal of Atmospheric and Solar Terrestrial Physics, 67, 10541062.CrossRefGoogle Scholar
Scotto, C. 2009. Electron density profile calculation technique for Autoscala ionogram analysis. Advances in Space Research, 44, 756766.Google Scholar
Scotto, C.Pezzopane, M. 2002. A software for automatic scaling of foF2 and MUF(3000)F2 from ionograms. Proceedings of the XXVII General Assembly of the International Union of Radio Science, 17–24 August, Maastricht, The Netherlands. Ghent: International Union of Radio Science, CD-ROM.Google Scholar
Tsai, L.C.Berkey, F.T. 2000. Ionogram analysis using fuzzy segmentation and connectedness techniques. Radio Science, 35, 11731186.CrossRefGoogle Scholar
Zabotin, N.A., Wright, J.W.Zhbankov, G.A. 2006. NeXtYZ: three-dimensional electron density inversion for dynasonde ionograms. Radio Science, 41 , 10.1029/2005RS003352.Google Scholar
Zuccheretti, E., Tutone, G., Sciacca, U., Bianchi, C.Arokiasamy, B.J. 2003. The new AIS-INGV digital ionosonde. Annals of Geosphysics, 46, 647659.Google Scholar