Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T15:32:24.646Z Has data issue: false hasContentIssue false

PAPER PRESENTED AT INTERNATIONAL WORKSHOP ON INCREASING WHEAT YIELD POTENTIAL, CIMMYT, OBREGON, MEXICO, 20–24 MARCH 2006 Conservation agriculture: what is it and why is it important for future sustainable food production?

Published online by Cambridge University Press:  27 February 2007

P. R. HOBBS
Affiliation:
609 Bradfield Hall, Department of Crops and Soil Sciences, Cornell University, Ithaca, NY 14853, USA

Abstract

Conservation agriculture (CA), defined as minimal soil disturbance (no-till) and permanent soil cover (mulch) combined with rotations, is a more sustainable cultivation system for the future than those presently practised. The present paper first introduces the reasons for tillage in agriculture and discusses how this age-old agricultural practice is responsible for the degradation of natural resources and soils. The paper goes on to introduce conservation tillage (CT), a minimum tillage and surface mulch practice that was developed in response to the severe wind erosion caused by mouldboard tillage of grasslands and referred to as the American dust bowl of the 1930s. CT is then compared with CA, a suggested improvement on CT, where no-till, mulch, and rotations significantly improve soil properties (physical, biological, and chemical) and other biotic factors, enabling more efficient use of natural resources. CA can improve agriculture through improvement in water infiltration and reducing erosion, improving soil surface aggregates, reducing compaction through promotion of biological tillage, increasing surface soil organic matter and carbon content, moderating soil temperatures, and suppressing weeds. CA also helps reduce costs of production, saves time, increases yield through more timely planting, reduces diseases and pests through stimulation of biological diversity, and reduces greenhouse gas emissions. Availability of suitable equipment is a major constraint to successful CA, but advances in design and manufacture of seed drills by local manufacturers are enabling farmers to experiment and accept this technology in many parts of the world. Estimates of farmer adoption of CA are close to 100 million ha in 2005, indicating that farmers are convinced of the benefits of this technology. The paper concludes that agriculture in the next decade will have to produce more food, sustainably, from less land through more efficient use of natural resources and with minimal impact on the environment in order to meet growing population demands. This will be a significant challenge for agricultural scientists, extension personnel, and farmers. Promoting and adopting CA management systems can help meet this complex goal.

Type
Wheat Yield Symposium
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)