Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-27T22:08:04.169Z Has data issue: false hasContentIssue false

Electrochemical studies of iron meteorites: phosphorus redox chemistry on the early Earth

Published online by Cambridge University Press:  05 January 2009

David E. Bryant
Affiliation:
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
David Greenfield
Affiliation:
Centre for Corrosion Technology, Materials and Engineering Research Institute, Sheffield Hallam University, Sheffield S1 1WB, UK
Richard D. Walshaw
Affiliation:
Leeds Electron Microscopy and Spectroscopy Centre, University of Leeds, Leeds LS2 9JT, UK
Suzanne M. Evans
Affiliation:
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
Alexander E. Nimmo
Affiliation:
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
Caroline L. Smith
Affiliation:
Meteorite Curator, Department of Mineralogy, Natural History Museum, London SW7 5BD, UK
Liming Wang
Affiliation:
School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
Matthew A. Pasek
Affiliation:
NASA Astrobiology Institute, University of Arizona, 1629E. University Blvd., Tucson, AZ, 85721, USA
Terence P. Kee*
Affiliation:
School of Chemistry, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK

Abstract

The mineral schreibersite, (Fe,Ni)3P, a ubiquitous component of iron meteorites, is known to undergo anoxic hydrolytic modification to afford a range of phosphorus oxyacids. H-phosphonic acid (H3PO3) is the principal hydrolytic product under hydrothermal conditions, as confirmed here by 31P-NMR spectroscopic studies on shavings of the Seymchan pallasite (Magadan, Russia, 1967), but in the presence of photochemical irradiation a more reduced derivative, H-phosphinic (H3PO2) acid, dominates. The significance of such lower oxidation state oxyacids of phosphorus to prebiotic chemistry upon the early Earth lies with the facts that such forms of phosphorus are considerably more soluble and chemically reactive than orthophosphate, the commonly found form of phosphorus on Earth, thus allowing nature a mechanism to circumvent the so-called Phosphate Problem.

This paper describes the Galvanic corrosion of Fe3P, a hydrolytic modification pathway for schreibersite, leading again to H-phosphinic acid as the key P-containing product. We envisage this pathway to be highly significant within a meteoritic context as iron meteorites are polymetallic composites in which dissimilar metals, with different electrochemical potentials, are connected by an electrically conducting matrix. In the presence of a suitable electrolyte medium, i.e., salt water, galvanic corrosion can take place. In addition to model electrochemical studies, we also report the first application of the Kelvin technique to map surface potentials of a meteorite sample that allows the electrochemical differentiation of schreibersite inclusions within an Fe:Ni matrix. Such experiments, coupled with thermodynamic calculations, may allow us to better understand the chemical redox behaviour of meteoritic components with early Earth environments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barone, V. & Cossi, M. (1998). J. Phys. Chem. A 102, 19952001.CrossRefGoogle Scholar
Bozec, N.L., Persson, D., Nazarov, A. & Thierry, D. (2002). J. Electrochem. Soc. 149, B403408.CrossRefGoogle Scholar
Brocks, J.J., Love, G.D., Summons, R.E., Knoll, A.H., Logan, G.A. & Bowden, S.A. (2005). Nature 437, 866870.Google Scholar
Bryant, D.E. & Kee, T.P. (2006). Chem. Commun. 23442346.Google Scholar
Cheran, L.-E., Johnstone, S., Sadeghi, S. & Thompson, M. (2007). Meas. Sci. Technol. 18, 567578.CrossRefGoogle Scholar
Chyba, C. & Sagan, C. (1992). Nature 355, 125132.CrossRefGoogle Scholar
Cooper, G.W., Onwo, W.M. & Cronin, J.R. (1992). Geochim. et Cosmochim. Acta, 56, 41094115.CrossRefGoogle Scholar
Cooper, G.W., Thiemens, M.H., Jackson, T.L. & Chang, S. (1997). Science 277, 10721074.Google Scholar
Cossi, M. (2003). J. Comp. Chem. 24, 669681.CrossRefGoogle Scholar
Curtiss, L.A., Redfern, P.C., Raghavachari, K. & Pople, J.A. (2001). J. Chem. Phys. 114, 108117.CrossRefGoogle Scholar
De Graaf, R.M. & Schwartz, A.W. (2000). Origins of Life & Evol. Biosph., 30, 405410.CrossRefGoogle Scholar
De Graaf, R.M., Visscher, J. & Schwartz, A.W. (1995). Nature 378, 474477.Google Scholar
De Graaf, R.M., Visscher, J. & Schwartz, A.W. (1997). J. Mol. Evol. 44, 237241.Google Scholar
De Graaf, R.M., Visscher, J. & Schwartz, A.W. (1998). Origins of Life and Evol. Biosph. 28, 271282.Google Scholar
Frisch, M.J. et al. (2004). GAUSSIAN-03, Revision B.05. Gaussian, Inc., Wallingford, CT, USA.Google Scholar
Gaidos, E.J., Nealson, K.H. & Kirschvink, J.L. (1999). Science 284, 16311633.CrossRefGoogle Scholar
Gulick, A. (1955). Am. Scient. 43, 479489.Google Scholar
Kirova, O.A. & Dyakonova, M.I. (1972). Meteoritika 31, 104108.Google Scholar
Leman, L.J., Orgel, L.E. & Ghadira, M.R. (2006). J. Am. Chem. Soc. 128, 2021.Google Scholar
Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, P.D. & Darnell, J. (2000). Molecular Cell Biology, 4th edn.W.H. Freeman, New York.Google Scholar
Macia, E. (2005). Chem. Soc. Rev. 34, 691701.Google Scholar
Österberg, R., Orgel, L.E. & Lohrmann, R. (1973). J. Mol. Evol. 2, 231234.CrossRefGoogle Scholar
Pasek, M.A. (2008). Proc. Nat. Acad. Sci. USA, 105, 853858.Google Scholar
Pasek, M.A., Dworkin, J.P. & Lauretta, D.S. (2007). Geochim. Cosmochim Acta, 71, 17211736.Google Scholar
Pasek, M.A., Kee, T.P., Bryant, D.E., Pavlov, A.A. & Lunine, J.I. (2008). Angew. Chem. Int. Ed. Engl. in press.Google Scholar
Pasek, M.A. & Lauretta, D.S. (2005). Astrobiology 5, 515535.CrossRefGoogle Scholar
Pasek, M.A. & Lauretta, D.S. (2008). Origins Life Evol. Biosph. 38, 521.Google Scholar
Pratesi, G., Bindi, L. & Moggi-Cecchi, V. (2006). Am. Mineral. 91, 451454.CrossRefGoogle Scholar
Robert, F. & Chaussidon, M. (2006). Nature 443, 969972.CrossRefGoogle Scholar
Schink, B. & Friedrich, M. (2000). Nature 406, 3637.Google Scholar
Schwartz, A.W. (1995). Planet. Space Sci. 43, 161165.Google Scholar
Schwartz, A.W. (1997). J. Theor. Biol. 187, 523527.CrossRefGoogle Scholar
Stratmann, M. & Streckel, H. (1990). Corrosion Sci. 30, 681696.Google Scholar
Tanabe, H., Shibuya, T., Kobayashi, N. & Misawa, T. (1997). ISIJ International 37, 278282.Google Scholar
Van Cappellen, P. & Ingall, E.D. (1996). Science 271, 493496.CrossRefGoogle Scholar
Van Niekerk, D., Greenwood, R.C., Franchi, I.A., Scott, E.R.D. & Keil, K. (2007) Met. Planet. Sci. 42, A154.Google Scholar
Westheimer, F.H. (1987). Science 232, 11731178.CrossRefGoogle Scholar