Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-04T08:18:51.977Z Has data issue: false hasContentIssue false

High-energy x-ray scattering studies of battery materials

Published online by Cambridge University Press:  08 June 2016

Matthew P.B. Glazer
Affiliation:
Materials Science and Engineering Department, Northwestern University, USA; mglazer@u.northwestern.edu
John S. Okasinski
Affiliation:
Advanced Photon Source, Argonne National Laboratory, USA; okasinski@aps.anl.gov
Jonathan D. Almer
Affiliation:
Advanced Photon Source, Argonne National Laboratory, USA; almer@aps.anl.gov
Yang Ren
Affiliation:
Advanced Photon Source, Argonne National Laboratory, USA; ren@aps.anl.gov
Get access

Abstract

High-energy x-ray (HEX) scattering is a sensitive and powerful tool to nondestructively probe the atomic and mesoscale structures of battery materials under synthesis and operational conditions. The penetration power of HEXs enables the use of large, practical samples and realistic environments, allowing researchers to explore the inner workings of batteries in both laboratory and commercial formats. This article highlights the capability and versatility of HEX techniques, particularly from synchrotron sources, to elucidate materials synthesis processes and thermal instability mechanisms in situ, to understand (dis)charging mechanisms in operando under a variety of cycling conditions, and to spatially resolve electrode/electrolyte responses to highlight connections between inhomogeneity and performance. Such studies have increased our understanding of the fundamental mechanisms underlying battery performance. By deepening our understanding of the linkages between microstructure and overall performance, HEXs represent a powerful tool for validating existing batteries and shortening battery-development timelines.

Type
Research Article
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Liss, K.-D., Bartels, A., Schreyer, A., Clemens, H., Textures Microstruct. 35, 219 (2003).Google Scholar
Merlini, M., Hanfland, M., High Press. Res. 33, 511 (2013).CrossRefGoogle Scholar
Kelton, K.F., Lee, G.W., Gangopadhyay, A.K., Hyers, R.W., Rathz, T.J., Rogers, J.R., Robinson, M.B., Robinson, D.S., Phys. Rev. Lett. 90, 195504 (2003).Google Scholar
Shastri, S.D., Almer, J., Ribbing, C., Cederstrom, B., J. Synchrotron Radiat. 14, 204 (2007).Google Scholar
Cloetens, P., Ludwig, W., Baruchel, J., Van Dyck, D., Van Landuyt, J., Guigay, J.P., Schlenker, M., Appl. Phys. Lett. 75, 2912 (1999).Google Scholar
Jensen, H., Bremholm, M., Nielsen, R.P., Joensen, K.D., Pedersen, J.S., Birkedal, H., Chen, Y.-S., Almer, J., Søgaard, E.G., Iversen, S.B., Iversen, B.B., Angew. Chem. Int. Ed. 119, 1131 (2007).Google Scholar
Chen, Z.H., Ren, Y., Qin, Y., Wu, H.M., Ma, S.Q., Ren, J.G., He, X.M., Sun, Y.K., Amine, K., J Mater. Chem. 21, 5604 (2011).Google Scholar
Li, Y., Xu, R., Ren, Y., Lu, J., Wu, H., Wang, L., Miller, D.J., Sun, Y.-K., Amine, K., Chen, Z., Nano Energy 19, 522 (2016).Google Scholar
Xu, G.L., Qin, Y., Ren, Y., Cai, L., An, K., Amine, K., Chen, Z.H., J. Mater. Chem. A 3, 13031 (2015).Google Scholar
Liu, Q., Li, Z.-F., Liu, Y., Zhang, H., Ren, Y., Sun, C.-J., Lu, W., Zhou, Y., Stanciu, L., Stach, E.A., Xie, J., Nat. Commun. 6, 6127 (2015).Google Scholar
Sun, Y.-K., Chen, Z., Noh, H.-J., Lee, D.-J., Jung, H.-G., Ren, Y., Wang, S., Yoon, C.S., Myung, S.-T., Amine, K., Nat. Mater. 11, 942 (2012).Google Scholar
Chen, Z., Ren, Y., Lee, E., Johnson, C., Qin, Y., Amine, K., Adv. Energy Mater. 3, 729 (2013).Google Scholar
Chen, Z., Ren, Y., Jansen, A.N., Lin, C.-K., Weng, W., Amine, K., Nat. Commun. 4, 1513 (2013).Google Scholar
Yang, X.Q., Sun, X., McBreen, J., Electrochem. Commun. 2, 733 (2000).Google Scholar
Yoon, W.-S., Nam, K.-W., Jang, D., Chung, K.Y., Cho, Y.-H., Choi, S., Hanson, J.C., Yang, X.-Q., Electrochem. Commun. 15, 74 (2012).CrossRefGoogle Scholar
Liu, Q., He, H., Li, Z.-F., Liu, Y., Ren, Y., Lu, W., Lu, J., Stach, E.A., Xie, J., ACS Appl. Mater. Interfaces 6, 3282 (2014).Google Scholar
Liu, H., Strobridge, F.C., Borkiewicz, O.J., Wiaderek, K.M., Chapman, K.W., Chupas, P.J., Grey, C.P., Science 344, 1252817 (2014).Google Scholar
Glazer, M.P.B., Cho, J., Almer, J., Okasinski, J., Braun, P.V., Dunand, D.C., Adv. Energy Mater. 5, 1500466 (2015).CrossRefGoogle Scholar
Wang, F., Wu, L., Key, B., Yang, X.-Q., Grey, C.P., Zhu, Y., Graetz, J., Adv. Energy Mater. 3, 1324 (2013).Google Scholar
Shui, J.-L., Okasinski, J.S., Chen, C., Almer, J.D., Liu, D.-J., ChemSusChem 7, 543 (2014).Google Scholar
Shui, J.-L., Okasinski, J.S., Kenesei, P., Dobbs, H.A., Zhao, D., Almer, J.D., Liu, D.-J., Nat. Commun. 4, 2255 (2013).Google Scholar
Kirshenbaum, K., Bock, D.C., Lee, C.-Y., Zhong, Z., Takeuchi, K.J., Marschilok, A.C., Takeuchi, E.S., Science 347, 149 (2015).Google Scholar
Paxton, W.A., Zhong, Z., Tsakalakos, T., J. Power Sources 275, 429 (2015).Google Scholar
Rijssenbeek, J., Gao, Y., Zhong, Z., Croft, M., Jisrawi, N., Ignatov, A., Tsakalakos, T., J. Power Sources 196, 2332 (2011).Google Scholar
Leemreize, H., Almer, J.D., Stock, S.R., Birkedal, H., J.R. Soc. Interface 10, 20130319 (2013).Google Scholar
Poulsen, H.F., Nielsen, S.F., Lauridsen, E.M., Schmidt, S., Suter, R.M., Lienert, U., Margulies, L., Lorentzen, T., Jensen, D.J., J. Appl. Crystallogr. 34, 751 (2001).Google Scholar
Ulvestad, A., Cho, H.M., Harder, R., Kim, J.W., Dietze, S.H., Fohtung, E., Meng, Y.S., Shpyrko, O.G., Appl. Phys. Lett. 104 (7), 073108 (2014).CrossRefGoogle Scholar
Borland, M., J. Phys. Conf. Ser. 425, 042016 (2013), http://dx.doi.org/10.1088/1742-6596/425/4/042016.Google Scholar
Reich, E.S., Nature 501, 148 (2013).Google Scholar