Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T06:43:37.568Z Has data issue: false hasContentIssue false

Angled physical vapor deposition techniques for non-conformal thin films and three-dimensional structures

Published online by Cambridge University Press:  12 February 2016

Zhuoxian Wang
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
Paul R. West
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA Intel Corporation, Hillsboro, OR 97124, USA
Xiangeng Meng
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
Nathaniel Kinsey
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
Vladimir M. Shalaev
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
Alexandra Boltasseva*
Affiliation:
School of Electrical and Computer Engineering and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA
*
Address all correspondence to Alexandra Boltasseva at aeb@purdue.edu
Get access

Abstract

The field of nanophotonics has experienced a dramatic development in recent years, which requires ample candidate structures to achieve desirable functionalities. For many novel device designs in emerging field of transformation optics, optical metamaterials, and others, non-uniform and non-conformal thin films as well as three-dimensional (3D) structures are necessary to achieve advanced functionalities. Here, we report several techniques utilizing angled physical vapor deposition to obtain unique and complex 3D structures such as films with tapered thickness on planar substrates, tapered or uniform films on curved surfaces, and 3D nanorod arrays. These structures could enrich the existing practical design space for applications in nanophotonics and nanoelectronics.

Type
Plasmonics, Photonics, and Metamaterials Research Letters
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jacob, Z., Alekseyev, L.V., and Narimanov, E.: Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006).CrossRefGoogle ScholarPubMed
2. Kildishev, A.V. and Narimanov, E.E.: Impedance-matched hyperlens. Opt. Lett. 32, 3432 (2007).CrossRefGoogle ScholarPubMed
3. Wang, W., Xing, H., Fang, L., Liu, Y., Ma, J.X., Lin, L., Wang, C.T., and Luo, X.G.: Far-field imaging device: planar hyperlens with magnification using multi-layer metamaterial. Opt. Express 16, 21142 (2008).CrossRefGoogle ScholarPubMed
4. Kildishev, A.V. and Shalaev, V.M.: Engineering space for light via transformation optics. Opt. Lett. 33, 43 (2008).CrossRefGoogle ScholarPubMed
5. Suh, J.Y., Huntington, M.D., Kim, C.H., Zhou, W., Wasielewski, M.R., and Odom, T.W.: Extraordinary Nonlinear absorption in 3D bowtie nanoantennas. Nano Lett. 12, 269 (2012).CrossRefGoogle ScholarPubMed
6. Robbie, K., Sit, J.C., and Brett, M.J.: Advanced techniques for glancing angle deposition. J. Vac. Sci. Technol. B 16, 1115 (1998).CrossRefGoogle Scholar
7. Hawkeye, M.M. and Brett, M.J.: Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317 (2007).CrossRefGoogle Scholar
8. Zhao, Y.P., Ye, D.X., Wang, G.C., and Lu, T.M.: Designing nanostructures by glancing angle deposition. Proc. SPIE 5219, 59 (2003).CrossRefGoogle Scholar
9. Mark, A.G., Gibbs, J.G., Lee, T.C., and Fischer, P.: Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802 (2013).CrossRefGoogle ScholarPubMed
10. Jensen, M.O. and Brett, M.J.: Square spiral 3D photonic bandgap crystals at telecommunications frequencies. Opt. Express 13, 3348 (2005).CrossRefGoogle ScholarPubMed
11. Barnes, W.L., Dereux, A., and Ebbesen, T.W.: Surface plasmon subwavelength optics. Nature 424, 824 (2003).CrossRefGoogle ScholarPubMed
12. Lal, S., Link, S., and Halas, N.J.: Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641 (2007).CrossRefGoogle Scholar
13. Liu, Z.W., Lee, H., Xiong, Y., Sun, C., and Zhang, X.: Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).CrossRefGoogle ScholarPubMed
14. Lu, D.L. and Liu, Z.W.: Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).CrossRefGoogle ScholarPubMed
15. Boltasseva, A. and Atwater, H.A.: Low-loss plasmonic metamaterials. Science 331, 290 (2011).CrossRefGoogle ScholarPubMed
16. West, P.R., Ishii, S., Naik, G.V., Emani, N.K., Shalaev, V.M., and Boltasseva, A.: Searching for better plasmonic materials. Laser Photonics Rev. 4, 795 (2010).CrossRefGoogle Scholar
17. Guler, U., Boltasseva, A., and Shalaev, V.M.: Refractory plasmonics. Science 344, 263 (2014).CrossRefGoogle ScholarPubMed
18. Kinsey, N., Ferrera, M., Shalaev, V.M., and Boltasseva, A.: Examining nanophotonics for integrated hybrid systems: a review of plasmonic interconnects and modulators using traditional and alternative materials [Invited]. J. Opt. Soc. Am. B 32, 121 (2015).CrossRefGoogle Scholar
19. Li, W., Guler, U., Kinsey, N., Naik, G.V., Boltasseva, A., Guan, J.G., Shalaev, V.M., and Kildishev, A.V.: Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959 (2014).CrossRefGoogle ScholarPubMed
20. Guler, U., Ndukaife, J.C., Naik, G.V., Nnanna, A.G.A., Kildishev, A.V., Shalaev, V.M., and Boltasseva, A.: Local heating with lithographically fabricated plasmonic titanium nitride nanoparticles. Nano Lett. 13, 6078 (2013).CrossRefGoogle ScholarPubMed
21. Kinsey, N., Ferrera, M., Naik, G.V., Babicheva, V.E., Shalaev, V.M., and Boltasseva, A.: Experimental demonstration of titanium nitride plasmonic interconnects. Opt. Express 22, 12238 (2014).CrossRefGoogle ScholarPubMed
22. Guler, U., Shalaev, V.M., and Boltasseva, A.: Nanoparticle plasmonics: going practical with transition metal nitrides. Mater. Today 18, 227 (2015).CrossRefGoogle Scholar
23. Yang, Y.G., Zhou, X.W., Johnson, R.A., and Wadley, H.N.G.: Monte Carlo simulation of hyperthermal physical vapor deposition. Acta Mater. 49, 3321 (2001).CrossRefGoogle Scholar
24. Chen, W., Thoreson, M.D., Kildishev, A.V., and Shalaev, V.M.: Fabrication and optical characterizations of smooth silver–silica nanocomposite films. Laser Phy. Lett. 7, 677 (2010).CrossRefGoogle Scholar
25. West, P.R., Kinsey, N., Ferrera, M., Kildishev, A.V., Shalaev, V.M., and Boltasseva, A.: Adiabatically tapered hyperbolic metamaterials for dispersion control of high-k waves. Nano Lett. 15, 498 (2015).CrossRefGoogle ScholarPubMed
26. Noginov, M.A., Zhu, G., Belgrave, A.M., Bakker, R., Shalaev, V.M., Narimanov, E.E., Stout, S., Herz, E., Suteewong, T., and Wiesner, U.: Demonstration of a spaser-based nanolaser. Nature 460, 1110 (2009).CrossRefGoogle ScholarPubMed
27. Wang, H.H. and Zhao, Y.P.: Nanostructure evolution of YBa2Cu3O x thin films grown by pulsed-laser glancing-angle deposition. J. Vac. Sci. Technol. B 24, 1230 (2006).CrossRefGoogle Scholar
28. Zhao, Y.P.: Dynamic shadowing growth and its energy applications. Front. Energy Res. 2, 38 (2015).Google Scholar
29. Kiema, G.K., Colgan, M.J., and Brett, M.J.: Dye sensitized solar cells incorporating obliquely deposited titanium oxide layers. Sol. Energy Mater. Sol. Cells 85, 321 (2005).CrossRefGoogle Scholar
30. Wong, M.S., Lee, M.F., Chen, C.L., and Huang, C.H.: Vapor deposited sculptured nano-porous titania films by glancing angle deposition for efficiency enhancement in dye-sensitized solar cells. Thin Solid Films 519, 1717 (2010).CrossRefGoogle Scholar