Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-27T00:06:24.828Z Has data issue: false hasContentIssue false

Enhanced heat transport in partitioned thermal convection

Published online by Cambridge University Press:  06 November 2015

Yun Bao
Affiliation:
State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China Department of Mechanics, Sun Yat-Sen University, Guangzhou 510275, China
Jun Chen
Affiliation:
State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
Bo-Fang Liu
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Zhen-Su She
Affiliation:
State Key Laboratory for Turbulence and Complex Systems and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
Jun Zhang
Affiliation:
Courant Institute and Department of Physics, New York University, New York, NY 10012, USA NYU-ECNU Institutes of Mathematical Sciences and Physics Research, NYU-Shanghai, Shanghai 200062, China
Quan Zhou*
Affiliation:
Shanghai Institute of Applied Mathematics and Mechanics and Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
*
Email address for correspondence: qzhou@shu.edu.cn

Abstract

Enhancement of heat transport across a fluid layer is of fundamental interest as well as great technological importance. For decades, Rayleigh–Bénard convection has been a paradigm for the study of convective heat transport, and how to improve its overall heat-transfer efficiency is still an open question. Here, we report an experimental and numerical study that reveals a novel mechanism that leads to much enhanced heat transport. When vertical partitions are inserted into a convection cell with thin gaps left open between the partition walls and the cooling/heating plates, it is found that the convective flow becomes self-organized and more coherent, leading to an unprecedented heat-transport enhancement. In particular, our experiments show that with six partition walls inserted, the heat flux can be increased by approximately 30 %. Numerical simulations show a remarkable heat-flux enhancement of up to 2.3 times (with 28 partition walls) that without any partitions.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.Google Scholar
Ahlers, G. & Xu, X.-C. 2001 Prandtl-number dependence of heat transport in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 86, 33203323.Google Scholar
Ashkenazi, S. & Steinberg, V. 1999 High Rayleigh number turbulent convection in a gas near the gas–liquid critical point. Phys. Rev. Lett. 83, 47604763.CrossRefGoogle Scholar
Biferale, L., Perlekar, P., Sbragaglia, M. & Toschi, F. 2012 Convection in multiphase fluid flows using lattice Boltzmann methods. Phys. Rev. Lett. 108, 104502.Google Scholar
Chavanne, X., Chillà, F., Castaing, B., Hebral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.Google Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.Google Scholar
Chorin, A. J. 1968 Numerical solution of the Navier–Stokes equations. Maths. Comput. 22 (104), 745762.Google Scholar
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. Lett. 54 (6), R5901R5904.Google Scholar
Du, Y.-B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81, 987990.Google Scholar
Funfschilling, D., Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger. J. Fluid Mech. 536, 145154.Google Scholar
Gibert, M., Pabiou, H., Tisserand, J.-C., Gertjerenken, B., Castaing, B. & Chillà, F. 2009 Heat convection in a vertical channel: plumes versus turbulent diffusion. Phys. Fluids 21, 035109.Google Scholar
Golub, G. H. & van Loan, C. F. 1996 Matrix Computations, 3rd edn. Johns Hopkins.Google Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.Google Scholar
Harlow, F. H. & Welch, J. E. 1965 Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 21822189.Google Scholar
He, X.-Z., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.Google Scholar
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111, 104501.Google Scholar
Huang, Y.-X. & Zhou, Q. 2013 Counter-gradient heat transport in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 737, R3.Google Scholar
Jin, X.-L. & Xia, K.-Q. 2008 An experimental study of kicked thermal turbulence. J. Fluid Mech. 606, 133151.Google Scholar
Kerr, R. M. & Herring, J. 2000 Prandtl number dependence of Nusselt number in direct numerical simulations. J. Fluid Mech. 491, 325344.CrossRefGoogle Scholar
King, E. M., Stellmach, S., Noir, J., Hansen, U. & Aurnow, J. M. 2009 Boundary layer control of rotating convection systems. Nature 457, 301304.Google Scholar
Lakkaraju, R., Stevens, R. J. A. M., Oresta, P., Verzicco, R., Lohse, D. & Prosperetti, A. 2013 Heat transport in bubbling turbulent Rayleigh–Bénard convection. Proc. Natl Acad. Sci. USA 110, 92379242.Google Scholar
Liu, B. & Zhang, J. 2008 Self-induced cyclic reorganization of many bodies through thermal convection. Phys. Rev. Lett. 100, 244501.Google Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.Google Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.Google Scholar
du Puits, R., Resagk, C. & Thess, A. 2010 Measurements of the instantaneous local heat flux in turbulent Rayleigh–Bénard convection. New J. Phys. 12, 075023.Google Scholar
Roche, P.-E., Gauthier, F., Chabaud, B. & Hébral, B. 2005 Ultimate regime of convection: robustness to poor thermal reservoirs. Phys. Fluids 17, 115107.Google Scholar
Shishkina, O., Stevens, R. J. A. M., Grossmann, S. & Lohse, D. 2010 Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution. New J. Phys. 12, 075022.Google Scholar
Silano, G., Sreenivasan, K. R. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between $10^{-1}$ and $10^{4}$ and Rayleigh numbers between $10^{5}$ and $10^{9}$ . J. Fluid Mech. 662, 409446.Google Scholar
Stevens, R. J. A. M., Lohse, D. & Verzicco, R. 2011 Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection. J. Fluid Mech. 688, 3143.Google Scholar
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2009 Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J. Fluid Mech. 637, 105135.CrossRefGoogle Scholar
Urban, R., Hanzelka, P., Kralik, T., Musilova, V., Srnka, A. & Skrbek, L. 2012 Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers. Phys. Rev. Lett. 109, 154301.Google Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.Google Scholar
Wagner, C. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25, 085110.Google Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.Google Scholar
Xia, K.-Q., Lam, S. & Zhou, S.-Q. 2002 Heat-flux measurement in high-Prandtl-number turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 88, 064501.Google Scholar
Xia, K.-Q. & Lui, S.-L. 1997 Turbulent thermal convection with an obstructed sidewall. Phys. Rev. Lett. 79, 50065009.Google Scholar
Zhong, J.-Q., Funfschilling, D. & Ahlers, G. 2009 a Enhanced heat transport by turbulent two-phase Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 124501.Google Scholar
Zhong, J.-Q., Stevens, R. J. A. M., Clercx, H. J. H., Verzicco, R., Lohse, D. & Ahlers, G. 2009 b Prandtl-, Rayleigh-, and Rossby-number dependence of heat transport in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 102, 044502.Google Scholar
Zhou, Q., Liu, B.-F., Li, C.-M. & Zhong, B.-C. 2012 Aspect ratio dependence of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells. J. Fluid Mech. 710, 260276.Google Scholar
Zhou, Q., Lu, H., Liu, B.-F. & Zhong, B.-C. 2013 Measurements of heat transport by turbulent Rayleigh–Bénard convection in rectangular cells of widely varying aspect ratios. Sci. China-Phys. Mech. Astron. 56, 989994.Google Scholar
Zhou, Q., Sugiyama, K., Stevens, R. J. A. M., Grossmann, S., Lohse, D. & Xia, K.-Q. 2011 Horizontal structures of velocity and temperature boundary layers in two-dimensional numerical turbulent Rayleigh–Bénard convection. Phys. Fluids 23, 125104.Google Scholar

Bao et al. supplementary movie

The movie about the onset of flow structures in the convection cell with 20 partition walls at d=2 mm and Ra=1e8 from numerical results. Left panel: The temperature (color) and velocity (arrows) fields. Here, the red and blue colors correspond to the high and low temperature regions, respectively. Right panel: The pressure field (color), where the red and blue colors respectively correspond to the high and low pressure regions.

Download Bao et al. supplementary movie(Video)
Video 31.6 MB

Bao et al. supplementary movie

The movie about the onset of flow structures in the convection cell with 20 partition walls at d=2 mm and Ra=1e8 from numerical results. Left panel: The temperature (color) and velocity (arrows) fields. Here, the red and blue colors correspond to the high and low temperature regions, respectively. Right panel: The pressure field (color), where the red and blue colors respectively correspond to the high and low pressure regions.

Download Bao et al. supplementary movie(Video)
Video 17.4 MB