Hostname: page-component-7c8c6479df-ws8qp Total loading time: 0 Render date: 2024-03-28T05:53:32.001Z Has data issue: false hasContentIssue false

The Galactic center: a model for cosmic ray interactions in starburst galaxies?

Published online by Cambridge University Press:  22 May 2014

T. Yoast-Hull
Affiliation:
Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA email: yoasthull@wisc.edu Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, WI, USA
J. S. Gallagher III
Affiliation:
Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
E. Zweibel
Affiliation:
Department of Physics, University of Wisconsin-Madison, Madison, WI 53706, USA email: yoasthull@wisc.edu Center for Magnetic Self-Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, WI, USA Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The Galactic center contains strong magnetic fields, high radiation fields, and dense molecular gas, as is also the case in starburst galaxies. The close proximity of the Galactic center allows for more and better observations of the interstellar medium than for extragalactic sources making it an ideal place for testing models for cosmic ray interactions. We compare our semi-analytic model for cosmic ray interactions to published data for both the Galactic center and the starburst galaxy NGC 253. We present the predicted radio and γ-ray spectra and compare the results with published measurements. In this way we provide a quantitative basis for assessing the degree to which the Galactic center resembles a starburst system.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abramowski, A., Acero, F., Aharonian, F., et al. 2012, ApJ 757, 158CrossRefGoogle Scholar
Boettcher, E., Zweibel, E. G., Yoast-Hull, T. M. & Gallagher, J. S. III 2013, ApJ in pressGoogle Scholar
Carilli, C. L. 1996, A&A 305, 402Google Scholar
Paglione, T. A. D. & Abrahams, R. D. 2012, ApJ 755, 106CrossRefGoogle Scholar
Peng, R., Zhou, S., Whiteoak, J. B., Lo, K. Y., & Sutton, E. C. 1996, ApJ 470, 821CrossRefGoogle Scholar
Ricci, R., Prandoni, I., Gruppioni, C., Sault, R. J., & de Zotti, G. 2006, A&A 445, 465Google Scholar
Williams, P. K. G. & Bower, G. C. 2010, ApJ 710, 1462CrossRefGoogle Scholar
Yoast-Hull, T. M., Everett, J. E., Gallagher, J. S. III, & Zweibel, E. G. 2013a, ApJ 768, 53CrossRefGoogle Scholar
Yoast-Hull, T. M., Gallagher, J. S. III, Zweibel, E. G., & Everett, J. E. 2014, ApJ 780, 137CrossRefGoogle Scholar
Yusef-Zadeh, F., Hewitt, J. W., Wardle, M., et al. 2013, ApJ 762, 33Google Scholar