Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T07:58:25.703Z Has data issue: false hasContentIssue false

Observational Constraints for Modeling Diffuse Molecular Clouds

Published online by Cambridge University Press:  21 February 2014

S. R. Federman*
Affiliation:
Department of Physics and Astronomy, University of Toledo, MS 111, Toledo, 43606 OHUSA email: steven.federman@utoledo.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Ground-based and space-borne observations of diffuse molecular clouds suggest a number of areas where further improvements to modeling efforts is warranted. I will highlight those that have the widest applicability. The range in CO fractionation caused by selective isotope photodissociation, in particular the large 12C16O/13C16O ratios observed toward stars in Ophiuchus, is not reproduced well by current models. Our ongoing laboratory measurements of oscillator strengths and predissociation rates for Rydberg transitions in CO isotopologues may help clarify the situtation. The CH+ abundance continues to draw attention. Small scale structure seen toward ζ Per may provide additional constraints on the possible synthesis routes. The connection between results from optical transitions and those from radio and sub-millimeter wave transitions requires further effort. A study of OH+ and OH toward background stars reveals that these species favor different environments. This brings to focus the need to model each cloud along the line of sight separately, and to allow the physical conditions to vary within an individual cloud, in order to gain further insight into the chemistry. Now that an extensive set of data on molecular excitation is available, the models should seek to reproduce these data to place further constraints on the modeling results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Bally, J. & Langer, W. D. 1982, ApJ, 255, 143CrossRefGoogle Scholar
Black, J. H. & Dalgarno, A. 1977, ApJS, 34, 405CrossRefGoogle Scholar
Black, J. H. & van Dishoeck, E. F. 1991, ApJ, 369, L9Google Scholar
Boissé, P., Federman, S. R., Pineau des Forêts, G., Ritchey, A. M., & Sheffer, Y. 2013, A&A, 559, A131Google Scholar
Boissé, P., Le Petit, F., Rollinde, E., et al. 2005, A&A, 429, 509Google Scholar
Boissé, P., Rollinde, E., Hily-Blant, P., et al. 2009, A&A, 501, 221Google Scholar
Casu, S. & Cecchi-Pestellini, C. 2012, ApJ, 749, 48Google Scholar
Chan, W. F., Cooper, G., & Brion, C. E. 1993, Chem. Phys., 170, 123CrossRefGoogle Scholar
Eidelsberg, M., Jolly, A., Lemaire, J. L., et al. 1999, A&A, 346, 705Google Scholar
Eidelsberg, M., Lemaire, J. L., Federman, S. R., et al. 2012, A&A, 543, A69Google Scholar
Eidelsberg, M., Lemaire, J. L., Fillion, J. H., et al. 2004, A&A, 424, 355Google Scholar
Eidelsberg, M. & Rostas, F. 2003, ApJS, 145, 89Google Scholar
Eidelsberg, M., Sheffer, Y., Federman, S. R., et al. 2006, ApJ, 647, 1543CrossRefGoogle Scholar
Federman, S. R., Fritts, M., Cheng, S., et al. 2001, ApJS, 134, 133CrossRefGoogle Scholar
Federman, S. R., Lambert, D. L., Sheffer, Y., et al. 2003, ApJ, 591, 986Google Scholar
Federman, S. R., Rawlings, J. M. C., Taylor, S. D., & Williams, D. A. 1996a, MNRAS, 279, L41Google Scholar
Federman, S. R., Weber, J., & Lambert, D. L. 1996b, ApJ, 463, 181Google Scholar
Flower, D. R. & Pineaudes Forêts, G. des Forêts, G. 1998, MNRAS, 297, 1182CrossRefGoogle Scholar
Glassgold, A. E. & Langer, W. D. 1974, ApJ, 193, 73Google Scholar
Glassgold, A. E. & Langer, W. D. 1976, ApJ, 206, 85Google Scholar
Godard, B., Falgarone, E., & Pineau des Forêts, G. 2009, A&A, 495, 847Google Scholar
Gry, C., Boulanger, F., Nehmé, C., et al. 2002, A&A, 391, 675Google Scholar
Hupe, R. C., Sheffer, Y., & Federman, S. R. 2012, ApJ, 761, 38CrossRefGoogle Scholar
Indriolo, N. & McCall, B. J. 2012, ApJ, 745, 91Google Scholar
Jura, M. 1974, ApJ, 191, 375CrossRefGoogle Scholar
Jura, M. 1975a, ApJ, 197, 575Google Scholar
Jura, M. 1975b, ApJ, 197, 581Google Scholar
Krełowski, J., Beletsky, Y., & Galazutdinov, G. A. 2010, ApJ, 719, L20Google Scholar
Lambert, D. L., Sheffer, Y., Gilliland, R. L., & Federman, S. R. 1994, ApJ, 420, 756CrossRefGoogle Scholar
Liszt, H. S. & Lucas, R. 1998, A&A, 339, 561Google Scholar
Liszt, H. S. & Lucas, R. 2001, A&A, 370, 576Google Scholar
Lucas, R. & Liszt, H. S. 2000, A&A, 355, 327Google Scholar
Meyer, D. M., Lauroesch, J. T., Sofia, U. J., Draine, B. T., & Bertoldi, F. 2001, ApJ, 553, L59Google Scholar
Neufeld, D. A., Goicoechea, J. R., Sonnentrucker, P., et al. 2010, A&A, 521, L10Google Scholar
Pan, K., Federman, S. R., Sheffer, Y., & Andersson, B-G 2005, ApJ, 663, 986Google Scholar
Porras, A. J., Federman, S. R., Welty, D. E., & Ritchey, A. M. 2013, ApJ Letters, 781, 8Google Scholar
Ritchey, A. M., Federman, S. R., & Lambert, D. L. 2011, ApJ, 728, 36CrossRefGoogle Scholar
Rollinde, E., Boissé, P., Federman, S. R., & Pan, K. 2003, A&A, 401, 215Google Scholar
Roth, K. C. & Meyer, D. M. 1995, ApJ, 441, 129Google Scholar
Roueff, E., Felenbok, P., Black, J. H., & Gry, C. 2002, A&A, 384, 629Google Scholar
Savage, B. D., Bohlin, R. C., Drake, J. F., & Budich, W. 1977, ApJ, 216, 291Google Scholar
Sheffer, Y., Federman, S. R., & Andersson, B.-G. 2003, ApJ, 597, L29CrossRefGoogle Scholar
Sheffer, Y., Federman, S. R., & Lambert, D. L. 2002a, ApJ, 572, L95Google Scholar
Sheffer, Y., Lambert, D. L., & Federman, S. R. 2002b, ApJ, 574, L171Google Scholar
Sheffer, Y., Rogers, M., Federman, S. R., Lambert, D. L., & Gredel, R. 2007, ApJ, 667, 1002Google Scholar
Sheffer, Y., Rogers, M., Federman, S. R., et al. 2008, ApJ, 687, 1075CrossRefGoogle Scholar
Sonnentrucker, P., Welty, D. E., Thorburn, J. A., & York, D. G. 2007, ApJS, 168, 58Google Scholar
Stark, G., Lewis, B. R., Gibson, S. T., & England, J. P. 1998, ApJ, 505, 452Google Scholar
van Dishoeck, E. F. & Black, J. H. 1982, ApJ, 258, 533CrossRefGoogle Scholar
van Dishoeck, E. F. & Black, J. H. 1986, ApJS, 62, 109Google Scholar
van Dishoeck, E. F. & Black, J. H. 1988, ApJ, 334, 771Google Scholar
Visser, R., van Dishoeck, E. F., & Black, J. H. 2009, A&A, 503, 323Google Scholar
Watson, W. D., Anicich, V. G., & Huntress, W. T. Jr., 1976, ApJ, 205, L165Google Scholar
Wilson, T. L. 1999, Rep. Prog. Phys., 62, 143Google Scholar