Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T01:21:51.756Z Has data issue: false hasContentIssue false

Supernova remnants and the origin of cosmic rays

Published online by Cambridge University Press:  29 January 2014

Jacco Vink*
Affiliation:
Astronomical Institute Anton Pannekoek & GRAPPA, Universiteit van Amsterdam, Postbus 94249, 1090 GE Amsterdam, The Netherlands email: j.vink@uva.nl
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Supernova remnants have long been considered to be the dominant sources of Galactic cosmic rays. For a long time the prime evidence consisted of radio synchrotron radiation from supernova remnants, indicating the presence of electrons with energies of several GeV. However, in order to explain the cosmic ray energy density and spectrum in the Galaxy supernova remnant should use 10% of the explosion energy to accelerate particles, and about 99% of the accelerated particles should be protons and other atomic nuclei.

Over the last decade a lot of progress has been made in providing evidence that supernova remnant can accelerate protons to very high energies. The evidence consists of, among others, X-ray synchrotron radiation from narrow regions close to supernova remnant shock fronts, indicating the presence of 10-100 TeV electrons, and providing evidence for amplified magnetic fields, gamma-ray emission from both young and mature supernova remnants. The high magnetic fields indicate that the condition for accelerating protons to >1015 eV are there, whereas the gamma-ray emission from some mature remnants indicate that protons have been accelerated.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Abdo, A. A. & Fermi LAT Collaboration. 2011, ArXiv e-printsGoogle Scholar
Abdo, A. A., et al. 2010, ApJ, 710, L92CrossRefGoogle Scholar
Acciari, V. A., et al. 2011, ApJ 730 L20+Google Scholar
Acero, F., Ballet, J., Decourchelle, A., Lemoine-Goumard, M., Ortega, M., Giacani, E., Dubner, G. & Cassam-Chenaï, G. 2009, A&A, 505, 157Google Scholar
Ackermann, M., et al. 2013, Science, 339, 807Google Scholar
Aharonian, F., Akhperjanian, A., Barrio, J., et al. 2001, A&A, 370, 112Google Scholar
Aharonian, F., et al. 2005, A&A, 437, L7Google Scholar
Aharonian, F., et al. 2007, A&A, 464, 235Google Scholar
Aharonian, F., et al. 2008, A&A, 481, 401Google Scholar
Aharonian, F., et al. 2009, ApJ, 692, 1500CrossRefGoogle Scholar
Aharonian, F. A. & Atoyan, A. M. 1999, A&A, 351, 330Google Scholar
Aharonian, F. A., et al. 2004, Nature, 432, 75Google Scholar
Axford, W. I., Leer, E., & Skadron, G. 1977, in International Cosmic Ray Conference, Vol. 11, International Cosmic Ray Conference, 132Google Scholar
Baade, W. & Zwicky, F. 1934a, Contributions from the Mount Wilson Observatory, vol. 3, pp.73–78, 3, 73Google Scholar
Baade, W. & Zwicky, F. 1934b, Physical Review, 46, 76Google Scholar
Ballet, J. 2006, Advances in Space Research, 37, 1902Google Scholar
Bamba, A., Ueno, M., Nakajima, H., & Koyama, K. 2004, ApJ, 602, 257Google Scholar
Bell, A. R. 1978, MNRAS, 182, 147Google Scholar
Bell, A. R. 2004, MNRAS, 353, 550CrossRefGoogle Scholar
Berezhko, E. G., Ksenofontov, L. T., & Völk, H. J. 2003, A&A, 412, L11Google Scholar
Berezhko, E. G. & Völk, H. J. 2008, A&A, 492, 695Google Scholar
Berezhko, E. G. & Völk, H. J. 2010, A&A, 511, A34Google Scholar
Blandford, R. D. & Ostriker, J. P. 1978, ApJ, 221, L29Google Scholar
Bykov, A. M., Ellison, D. C., Osipov, S. M., Pavlov, G. G., & Uvarov, Y. A. 2011, ApJ, 735, L40Google Scholar
Carlton, A. K., Borkowski, K. J., Reynolds, S. P., Hwang, U., Petre, R., Green, D. A., Krishnamurthy, K., & Willett, R. 2011, ArXiv e-printsGoogle Scholar
Cassam-Chenaï, G., Hughes, J. P., Ballet, J., & Decourchelle, A. 2007, ApJ, 665, 315Google Scholar
Decourchelle, A., et al. 2001, A&A, 365, L218Google Scholar
Delaney, T. & Rudnick, L. 2003, ApJ, 589, 818CrossRefGoogle Scholar
Drury, L. O. & Downes, T. P. 2012, MNRAS, 427, 2308Google Scholar
Ellison, D. C., Patnaude, D. J., Slane, P., & Raymond, J. 2010, ApJ, 712, 287Google Scholar
Eriksen, K. A., Hughes, J. P., Badenes, C., Fesen, R., Ghavamian, P., Moffett, D., Plucinksy, P. P., Rakowski, C. E., Reynoso, E. M., & Slane, P. 2011, ApJ, 728, L28Google Scholar
Esposito, J. A., Hunter, S. D., Kanbach, G., & Sreekumar, P. 1996, ApJ, 461, 820Google Scholar
Ginzburg, V. L. 1959, in IAU Symposium, Vol. 9, URSI Symp. 1: Paris Symposium on Radio Astronomy, ed. Bracewell, R. N., 589CrossRefGoogle Scholar
Ginzburg, V. L. & Syrovatskii, S. I. 1964, The Origin of Cosmic RaysGoogle Scholar
Giordano, F., Naumann-Godo, M., Ballet, J., Bechtol, K., Funk, S., Lande, J., Mazziotta, M. N., Rainò, S., Tanaka, T., Tibolla, O., & Uchiyama, Y. 2012, ApJ, 744, L2Google Scholar
Giuliani, A., et al. 2011, ApJ, 742, L30Google Scholar
Helder, E., Vink, J., Bykov, A., Ohira, Y., Raymond, J., & Terrier, R. 2012, Space Science Rev., 1, 1Google Scholar
Helder, E. A. & Vink, J. 2008, ApJ, 686, 1094Google Scholar
Hinton, J. A. & Hofmann, W. 2009, ARAA, 47, 523Google Scholar
Katz, B. & Waxman, E. 2008, Journal of Cosmology and Astro-Particle Physics, 1, 18CrossRefGoogle Scholar
Kosenko, D., Blinnikov, S. I., & Vink, J. 2011, ArXiv e-printsGoogle Scholar
Koyama, K., et al. 1995, Nature, 378, 255Google Scholar
Krymskii, G. F. 1977, Soviet Physics Doklady, 22, 327Google Scholar
Lagage, P. O. & Cesarsky, C. J. 1983, A&A, 125, 249Google Scholar
Lemoine-Goumard, M., Renaud, M., Vink, J., Allen, G. E., Bamba, A., Giordano, F., & Uchiyama, Y. 2012, A&A, 545, A28Google Scholar
Orlando, S., Bocchino, F., Miceli, M., Petruk, O., & Pumo, M. L. 2012, ApJ, 749, 156Google Scholar
Patnaude, D. J., Vink, J., Laming, J. M., & Fesen, R. A. 2011, ApJ 729 L28+CrossRefGoogle Scholar
Ptuskin, V. S. & Zirakashvili, V. N. 2005, A&A, 429, 755Google Scholar
Reville, B. & Bell, A. R. 2013, MNRAS, 430, 2873Google Scholar
Reynolds, S. P. 2008, ARAA, 46, 89Google Scholar
Schure, K. M., Achterberg, A., Keppens, R., & Vink, J. 2010, MNRAS, 406, 2633CrossRefGoogle Scholar
Shklovsky, J. S. 1968, Supernovae (Interscience Monographs and Texts in Physics and Astronomy, London: Wiley, 1968)Google Scholar
Uchiyama, Y. & Aharonian, F. A. 2008, ApJ, 677, L105CrossRefGoogle Scholar
Vink, J. 2008, in American Institute of Physics Conference Series, Vol. 1085, American Institute of Physics Conference Series, 169–180Google Scholar
Vink, J. 2012a, ArXiv e-printsGoogle Scholar
Vink, J. 2012b, A&Ar, 20, 49Google Scholar
Vink, J., Bloemen, H., Kaastra, J. S., & Bleeker, J. A. M. 1998, A&A, 339, 201Google Scholar
Vink, J. & Laming, J. M. 2003, ApJ, 584, 758Google Scholar
Vink, J., Yamazaki, R., Helder, E. A., & Schure, K. M. 2010, ApJ, 722, 1727Google Scholar
Völk, H. J., Berezhko, E. G., & Ksenofontov, L. T. 2005, A&A, 433, 229Google Scholar
Warren, J. S., et al. 2005, ApJ, 634, 376Google Scholar
Webber, W. R. 1998, ApJ, 506, 329Google Scholar
Zirakashvili, V. N. & Aharonian, F. 2007, A&A, 465, 695Google Scholar