Hostname: page-component-7c8c6479df-p566r Total loading time: 0 Render date: 2024-03-27T09:59:57.328Z Has data issue: false hasContentIssue false

Superluminous Supernovae

Published online by Cambridge University Press:  29 January 2014

Robert M. Quimby*
Affiliation:
Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba 277-8583, Japan email: robert.quimby@ipmu.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Not long ago the sample of well studied supernovae, which were gathered mostly through targeted surveys, was populated exclusively by events with absolute peak magnitudes fainter than about −20. Modern searches that select supernovae not just from massive hosts but from dwarfs as well have produced a new census with a surprising difference: a significant percentage of supernovae found in these flux limited surveys peak at −21 magnitude or brighter. The energy emitted by these superluminous supernovae in optical light alone rivals the total explosion energy available to typical core collapse supernovae (>1051 erg). This makes superluminous supernovae difficult to explain through standard models. Adding further complexity to this picture are the distinct observational properties of various superluminous supernovae. Some may be powered in part by interactions with a hydrogen-rich, circumstellar material but others appear to lack hydrogen altogether. Some could be powered by large stores of radioactive material, while others fade quickly and have stringent limits on 56-Ni production. In this talk I will discuss the current observational constrains on superluminous supernova and the prospects for revealing their origins.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Aldering, G., Adam, G., Antilogus, P., et al. 2002, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 4836, Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, ed. Tyson, J. A. & Wolff, S., 61–72Google Scholar
Aldering, G., Antilogus, P., Bailey, S., et al. 2006, ApJ, 650, 510Google Scholar
Arcavi, I., Gal-Yam, A., Kasliwal, M. M., et al. 2010, ApJ, 721, 777Google Scholar
Barbary, K., Dawson, K. S., Tokita, K., et al. 2009, ApJ, 690, 1358Google Scholar
Berger, E., Chornock, R., Lunnan, R., et al. 2012, ApJ (Letters), 755, L29Google Scholar
Chatzopoulos, E., Wheeler, J. C., Vinko, J., et al. 2011, ApJ, 729, 143CrossRefGoogle Scholar
Chen, T.-W., Smartt, S. J., Bresolin, F., et al. 2013, ApJ (Letters), 763, L28CrossRefGoogle Scholar
Chomiuk, L., Chornock, R., Soderberg, A. M., et al. 2011, ApJ, 743, 114Google Scholar
Chornock, R., Berger, E., Rest, A., et al. 2013, ApJ, 767, 162CrossRefGoogle Scholar
Cooke, J., Sullivan, M., Gal-Yam, A., et al. 2012, Nature, 491, 228CrossRefGoogle Scholar
Deng, J. S., Hatano, K., Nakamura, T., et al. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 251, New Century of X-ray Astronomy, ed. Inoue, H. & Kunieda, H., 238Google Scholar
Dilday, B., Howell, D. A., Cenko, S. B., et al. 2012, Science, 337, 942Google Scholar
Drake, A. J., Djorgovski, S. G., Mahabal, A., et al. 2011, ApJ, 735, 106CrossRefGoogle Scholar
Drake, A. J., Djorgovski, S. G., Prieto, J. L., et al. 2010, ApJ (Letters), 718, L127CrossRefGoogle Scholar
Gal-Yam, A. 2012, in IAU Symposium, Vol. 279, IAU Symposium, 253–260CrossRefGoogle Scholar
Gal-Yam, A., Mazzali, P., Ofek, E. O., et al. 2009, Nature, 462, 624CrossRefGoogle Scholar
Garnavich, P. M., Aguilera, C., Becker, A., et al. 2010, in Bulletin of the American Astronomical Society, Vol. 42, American Astronomical Society Meeting Abstracts #215Google Scholar
Gezari, S., Halpern, J. P., Grupe, D., et al. 2009, ApJ, 690, 1313Google Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245Google Scholar
Kirshner, R. P., Jeffery, D. J., Leibundgut, B., et al. 1993, ApJ, 415, 589Google Scholar
Knop, R., Aldering, G., Deustua, S., et al. 1999, IAU circ., 7128, 1Google Scholar
Kozłowski, S., Kochanek, C. S., Stern, D., et al. 2010, ApJ, 722, 1624Google Scholar
Leloudas, G., Chatzopoulos, E., Dilday, B., et al. 2012, A&A, 541, A129Google Scholar
Leloudas, G., Stritzinger, M. D., Sollerman, J., et al. 2009, A&A, 505, 265Google Scholar
Li, W., Chornock, R., Leaman, J., et al. 2011a, MNRAS, 412, 1473Google Scholar
Li, W., Leaman, J., Chornock, R., et al. 2011b, MNRAS, 412, 1441CrossRefGoogle Scholar
Miller, A. A., Chornock, R., Perley, D. A., et al. 2009, ApJ, 690, 1303Google Scholar
Moriya, T. J. & Tominaga, N. 2012, ApJ, 747, 118CrossRefGoogle Scholar
Neill, J. D., Sullivan, M., Gal-Yam, A., et al. 2011, ApJ, 727, 15Google Scholar
Nugent, P., Aldering, G., Phillips, M. M., et al. 1999, IAU Circ., 7133, 1Google Scholar
Ouyed, R., Kostka, M., Koning, N., Leahy, D. A., & Steffen, W. 2012, MNRAS, 423, 1652CrossRefGoogle Scholar
Pastorello, A., Smartt, S. J., Botticella, M. T., et al. 2010, ApJ (Letters), 724, L16Google Scholar
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565Google Scholar
Perlmutter, S., Pennypacker, C. R., Goldhaber, G., et al. 1995, ApJ (Letters), 440, L41CrossRefGoogle Scholar
Quimby, R. M. 2006, PhD thesis, The University of Texas at AustinGoogle Scholar
Quimby, R. M., Aldering, G., Wheeler, J. C., et al. 2007, ApJ (Letters), 668, L99CrossRefGoogle Scholar
Quimby, R. M., Kulkarni, S. R., Kasliwal, M. M., et al. 2011, Nature, 474, 487CrossRefGoogle Scholar
Quimby, R. M., Yuan, F., Akerlof, C., & Wheeler, J. C. 2013a, MNRAS, 431, 912CrossRefGoogle Scholar
Quimby, R. M., Werner, M. C., Oguri, M., et al. 2013b, ApJ (Letters), 768, L20Google Scholar
Rest, A., Foley, R. J., Gezari, S., et al. 2011, ApJ, 729, 88CrossRefGoogle Scholar
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009CrossRefGoogle Scholar
Scalzo, R. A., Aldering, G., Antilogus, P., et al. 2010, ApJ, 713, 1073Google Scholar
Smith, N., Chornock, R., Li, W., et al. 2008, ApJ, 686, 467CrossRefGoogle Scholar
Smith, N., Li, W., Foley, R. J., et al. 2007, ApJ, 666, 1116CrossRefGoogle Scholar
Soderberg, A. M., Kulkarni, S. R., Nakar, E., et al. 2006, Nature, 442, 1014Google Scholar
Tanaka, M., Moriya, T. J., Yoshida, N., & Nomoto, K. 2012, MNRAS, 422, 2675Google Scholar
Turatto, M., Suzuki, T., Mazzali, P. A., et al. 2000, ApJ (Letters), 534, L57Google Scholar
Umeda, H. & Nomoto, K. 2008, ApJ, 673, 1014Google Scholar
Vinko, J., Zheng, W., Pandey, S. B., et al. 2012, in American Astronomical Society Meeting Abstracts, Vol. 219, American Astronomical Society Meeting Abstracts #219Google Scholar
Woosley, S. E. 2010, ApJ (Letters), 719, L204Google Scholar
Woosley, S. E., Blinnikov, S., & Heger, A. 2007, Nature, 450, 390Google Scholar
Yasuda, N. & Fukugita, M. 2010, AJ, 139, 39Google Scholar
Yuan, F., Quimby, R. M., Wheeler, J. C., et al. 2010, ApJ, 715, 1338Google Scholar