Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T08:14:09.736Z Has data issue: false hasContentIssue false

How can star formation be sustained?

Published online by Cambridge University Press:  06 January 2014

Filippo Fraternali*
Affiliation:
Department of Physics and Astronomy, University of Bologna (I)Kapteyn Astronomical Institute, University of Groningen (NL) email: filippo.fraternali@unibo.it
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is overwhelming evidence that the Milky Way has formed its stars at a relatively constant rate throughout the Hubble time. This implies that its stock of cold gas was not in place since the beginning but it has been acquired slowly through gas accretion. The gas accretion must have been at low metallicity in order to reconcile the metallicities observed in the disc with the predictions of chemical evolution models. But how does this gas accretion take place? I review the current evidence of gas accretion into the Milky Way and similar galaxies through the infall of cold gas clouds and satellites. The conclusion from these studies is that the infalling gas at high column densities observed in HI emission is a least one order of magnitude below the value required to sustain star formation, thus accretion must come from a different channel. The likely reservoir for gas accretion is the cosmological corona of virial-temperature gas in which every galaxy must be embedded. At the interface between the disc and the corona the cold high-metallicity disc gas and the hot coronal medium must mix efficiently and this mixing causes the cooling and accretion of the lower corona. I show how this mechanism reproduces the kinematics of the neutral extraplanar gas in the Milky Way and other nearby galaxies and the ionised high-velocity clouds observed in HST spectra. I conclude with the speculation that the loss in efficiency of the disc-corona interaction is the ultimate cause for the evolution of disc galaxies towards the red sequence.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2014 

References

Anderson, M. E. & Bregman, J. N. 2010, ApJ, 714, 320Google Scholar
Anderson, M. E. & Bregman, J. N. 2011, ApJ, 737, 22Google Scholar
Aumer, M. & Binney, J. J. 2009, MNRAS, 397, 1286Google Scholar
Barbieri, C. V., Fraternali, F., Oosterloo, T., Bertin, G., Boomsma, R., & Sancisi, R. 2005, A&A, 439, 947Google Scholar
Bekki, K. 2008, MNRAS, 390, L24Google Scholar
Bensby, T. & Feltzing, S. 2010, in IAU Symposium, Vol. 265, IAU Symposium, ed. Cunha, K., Spite, M., & Barbuy, B., 300–303Google Scholar
Binney, J. 1977, ApJ, 215, 483CrossRefGoogle Scholar
Binney, J. & Fraternali, F. 2012, in European Physical Journal Web of Conferences, Vol. 19, European Physical Journal Web of Conferences, 8001Google Scholar
Binney, J., Nipoti, C., & Fraternali, F. 2009, MNRAS, 397, 1804Google Scholar
Blitz, L., Spergel, D. N., Teuben, P. J., Hartmann, D., & Burton, W. B. 1999, ApJ, 514, 818CrossRefGoogle Scholar
Bogdan, A., Forman, W. R., Vogelsberger, M., Bourdin, H., Sijacki, D., Mazzotta, P., Kraft, R. P., Jones, C., Gilfanov, M., Churazov, E., & David, L. P. 2012, ArXiv e-printsGoogle Scholar
Boomsma, R., Oosterloo, T. A., Fraternali, F., van der Hulst, J. M., & Sancisi, R. 2008, A&A, 490, 555Google Scholar
Bregman, J. N. 1980, ApJ, 236, 577Google Scholar
Bregman, J. N. 2007, ARA&A, 45, 221Google Scholar
Bregman, J. N., Miller, E. D., Seitzer, P., Cowley, C. R., & Miller, M. J. 2013, ApJ, 766, 57Google Scholar
Chiappini, C., Matteucci, F., & Romano, D. 2001, ApJ, 554, 1044Google Scholar
Chomiuk, L. & Povich, M. S. 2011, AJ, 142, 197Google Scholar
Chynoweth, K. M., Langston, G. I., Holley-Bockelmann, K., & Lockman, F. J. 2009, AJ, 138, 287Google Scholar
Ciotti, L. & Ostriker, J. P. 1997, ApJL, 487, L105Google Scholar
Collins, J. A., Shull, J. M., & Giroux, M. L. 2009, ApJ, 705, 962Google Scholar
Crain, R. A., McCarthy, I. G., Frenk, C. S., Theuns, T., & Schaye, J. 2010, MNRAS, 407, 1403Google Scholar
Dai, X., Anderson, M. E., Bregman, J. N., & Miller, J. M. 2012, ApJ, 755, 107Google Scholar
Dekel, A., Birnboim, Y., Engel, G., Freundlich, J., Goerdt, T., Mumcuoglu, M., Neistein, E., Pichon, C., Teyssier, R., & Zinger, E. 2009, Nature, 457, 451Google Scholar
Elbaz, D., Dickinson, M., Hwang, H. S., Díaz-Santos, T., Magdis, G., Magnelli, B., Le Borgne, D., Galliano, F., Pannella, M., & Chanial, , et al. 2011, A&A, 533, A119Google Scholar
Fernández, X., Joung, M. R., & Putman, M. E. 2012, ApJ, 749, 181Google Scholar
Forman, W., Jones, C., & Tucker, W. 1985, ApJ, 293, 102Google Scholar
Fraternali, F. & Binney, J. J. 2006, MNRAS, 366, 449Google Scholar
Fraternali, F. & Binney, J. J. 2008, MNRAS, 386, 935Google Scholar
Fraternali, F., Marasco, A., Marinacci, F., & Binney, J. 2013, ApJL, 764, L21Google Scholar
Fraternali, F., Oosterloo, T., Sancisi, R., & van Moorsel, G. 2001, ApJL, 562, L47Google Scholar
Fraternali, F. & Tomassetti, M. 2012, MNRAS, 426, 2166Google Scholar
Fraternali, F., van Moorsel, G., Sancisi, R., & Oosterloo, T. 2002, AJ, 123, 3124CrossRefGoogle Scholar
Fukugita, M. & Peebles, P. J. E. 2006, ApJ, 639, 590CrossRefGoogle Scholar
Gatto, A., Fraternali, F., Read, J. I., Marinacci, F., Lux, H., & Walch, S. 2013, MNRASGoogle Scholar
Gentile, G., Józsa, G. I. G., Serra, P., Heald, G. H., de Blok, W. J. G., Fraternali, F., Patterson, M. T., Walterbos, R. A. M., & Oosterloo, T. 2013, A&A, 554, A125Google Scholar
Heald, G., Józsa, G., Serra, P., Zschaechner, L., Rand, R., Fraternali, F., Oosterloo, T., Walterbos, R., Jütte, E., & Gentile, G. 2011, A&A, 526, A118Google Scholar
Heald, G. H., Rand, R. J., Benjamin, R. A., & Bershady, M. A. 2007, ApJ, 663, 933CrossRefGoogle Scholar
Hodges-Kluck, E. J. & Bregman, J. N. 2013, ApJ, 762, 12Google Scholar
Hopkins, A. M. & Beacom, J. F. 2006, ApJ, 651, 142Google Scholar
Houck, J. C. & Bregman, J. N. 1990, ApJ, 352, 506Google Scholar
Ji, J., Irwin, J. A., Athey, A., Bregman, J. N., & Lloyd-Davies, E. J. 2009, ApJ, 696, 2252Google Scholar
Joung, M. R., Bryan, G. L., & Putman, M. E. 2012, ApJ, 745, 148Google Scholar
Kaastra, J. S., Werner, N., Herder, J. W. A. d., Paerels, F. B. S., de Plaa, J., Rasmussen, A. P., & de Vries, C. P. 2006, ApJ, 652, 189Google Scholar
Kalberla, P. M. W., Burton, W. B., Hartmann, D., Arnal, E. M., Bajaja, E., Morras, R., & Pöppel, W. G. L. 2005, A&A, 440, 775Google Scholar
Kaufmann, T., Mayer, L., Wadsley, J., Stadel, J., & Moore, B. 2006, MNRAS, 370, 1612Google Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541CrossRefGoogle Scholar
Kereš, D., Katz, N., Fardal, M., Davé, R., & Weinberg, D. H. 2009, MNRAS, 395, 160Google Scholar
Lehner, N. & Howk, J. C. 2011, Science, 334, 955CrossRefGoogle Scholar
Lehner, N., Howk, J. C., Thom, C., Fox, A. J., Tumlinson, J., Tripp, T. M., & Meiring, J. D. 2012, MNRAS, 424, 2896Google Scholar
Lilly, S. J., Carollo, C. M., Pipino, A., Renzini, A., & Peng, Y. 2013, ArXiv e-printsGoogle Scholar
Mapelli, M., Moore, B., & Bland-Hawthorn, J. 2008, MNRAS, 388, 697Google Scholar
Marasco, A. & Fraternali, F. 2011, A&A, 525, A134+Google Scholar
Marasco, A., Fraternali, F., & Binney, J. J. 2012, MNRAS, 419, 1107Google Scholar
Marasco, A., Marinacci, F., & Fraternali, F. 2013, MNRASGoogle Scholar
Marinacci, F., Binney, J., Fraternali, F., Nipoti, C., Ciotti, L., & Londrillo, P. 2010, MNRAS, 404, 1464Google Scholar
Marinacci, F., Fraternali, F., Nipoti, C., Binney, J., Ciotti, L., & Londrillo, P. 2011, MNRAS, 415, 1534Google Scholar
Mayer, L., Mastropietro, C., Wadsley, J., Stadel, J., & Moore, B. 2006, MNRAS, 369, 1021Google Scholar
McGaugh, S. S., Schombert, J. M., de Blok, W. J. G., & Zagursky, M. J. 2010, ApJL, 708, L14Google Scholar
Melioli, C., Brighenti, F., D'Ercole, A. & de Gouveia Dal Pino, E. M. 2008, MNRAS, 388, 573Google Scholar
Morganti, R., de Zeeuw, P. T., Oosterloo, T. A., McDermid, R. M., Krajnović, D., Cappellari, M., Kenn, F., Weijmans, A., & Sarzi, M. 2006, MNRAS, 371, 157Google Scholar
Muller, C. A., Oort, J. H., & Raimond, E. 1963, Academie des Sciences Paris Comptes Rendus, 257, 1661Google Scholar
Nelson, D., Vogelsberger, M., Genel, S., Sijacki, D., Kereš, D., Springel, V., & Hernquist, L. 2013, MNRAS, 429, 3353Google Scholar
Nicastro, F., Mathur, S., Elvis, M., Drake, J., Fiore, F., Fang, T., Fruscione, A., Krongold, Y., Marshall, H., & Williams, R. 2005, ApJ, 629, 700Google Scholar
Oort, J. H. 1970, A&A, 7, 381Google Scholar
Oosterloo, T., Fraternali, F., & Sancisi, R. 2007, AJ, 134, 1019Google Scholar
Oppenheimer, B. D., Davé, R., Kereš, D., Fardal, M., Katz, N., Kollmeier, J. A., & Weinberg, D. H. 2010, MNRAS, 406, 2325CrossRefGoogle Scholar
Panter, B., Jimenez, R., Heavens, A. F., & Charlot, S. 2007, MNRAS, 378, 1550Google Scholar
Penton, S. V., Stocke, J. T., & Shull, J. M. 2004, ApJS, 152, 29Google Scholar
Pipino, A., Calura, F., & Matteucci, F. 2013, MNRAS, 432, 2541Google Scholar
Pisano, D. J., Barnes, D. G., Gibson, B. K., Staveley-Smith, L., Freeman, K. C., & Kilborn, V. A. 2007, ApJ, 662, 959CrossRefGoogle Scholar
Planck Collaboration, Ade, P. A. R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., Aumont, J., Baccigalupi, C., Banday, A. J., & et al. 2013, ArXiv e-printsGoogle Scholar
Putman, M. E., Peek, J. E. G., & Joung, M. R. 2012, ARA&A, 50, 491Google Scholar
Putman, M. E., Staveley-Smith, L., Freeman, K. C., Gibson, B. K., & Barnes, D. G. 2003, ApJ, 586, 170Google Scholar
Rasmussen, J., Sommer-Larsen, J., Pedersen, K., Toft, S., Benson, A., Bower, R. G., & Grove, L. F. 2009, ApJ, 697, 79Google Scholar
Rocha-Pinto, H. J., Scalo, J., Maciel, W. J., & Flynn, C. 2000, A&A, 358, 869Google Scholar
Rubin, K. H. R., Prochaska, J. X., Koo, D. C., & Phillips, A. C. 2012, ApJL, 747, L26Google Scholar
Sancisi, R., Fraternali, F., Oosterloo, T., & van der Hulst, T. 2008, A&ARv, 15, 189Google Scholar
Schmidt, M. 1959, ApJ, 129, 243Google Scholar
Schönrich, R. & Binney, J. 2009, MNRAS, 396, 203Google Scholar
Shull, J. M., Jones, J. R., Danforth, C. W., & Collins, J. A. 2009, ApJ, 699, 754Google Scholar
Shull, J. M., Smith, B. D., & Danforth, C. W. 2012, ApJ, 759, 23Google Scholar
Spergel, D. N., Bean, R., Doré, O., Nolta, M. R., Bennett, C. L., Dunkley, J., Hinshaw, G., Jarosik, N., Komatsu, E., Page, L., Peiris, H. V., Verde, L., Halpern, M., Hill, R. S., Kogut, A., Limon, M., Meyer, S. S., Odegard, N., & Tucker, G. S. 2007, ApJS, 170, 377Google Scholar
Springel, V., Frenk, C. S., & White, S. D. M. 2006, Nature, 440, 1137Google Scholar
Steigman, G., Romano, D., & Tosi, M. 2007, MNRAS, 378, 576CrossRefGoogle Scholar
Struck, C. & Smith, D. C. 2009, MNRAS, 398, 1069Google Scholar
Swaters, R. A., Sancisi, R., & van der Hulst, J. M. 1997, ApJ, 491, 140Google Scholar
Thilker, D. A., Braun, R., Walterbos, R. A. M., Corbelli, E., Lockman, F. J., Murphy, E., & Maddalena, R. 2004, ApJL, 601, L39Google Scholar
Thom, C., Peek, J. E. G., Putman, M. E., Heiles, C., Peek, K. M. G., & Wilhelm, R. 2008, ApJ, 684, 364Google Scholar
Thom, C., Tumlinson, J., Werk, J. K., Prochaska, J. X., Oppenheimer, B. D., Peeples, M. S., Tripp, T. M., Katz, N. S., O'Meara, J. M., Brady Ford, A., Davé, R., Sembach, K. R., & Weinberg, D. H. 2012, ApJL, 758, L41Google Scholar
Twarog, B. A. 1980, ApJ, 242, 242Google Scholar
Wakker, B. P. & van Woerden, H. 1997, ARA&A, 35, 217Google Scholar
Wakker, B. P., York, D. G., Wilhelm, R., Barentine, J. C., Richter, P., Beers, T. C., Ivezić, Ž., & Howk, J. C. 2008, ApJ, 672, 298Google Scholar
White, S. D. M. & Rees, M. J. 1978, MNRAS, 183, 341Google Scholar