Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-25T16:46:19.264Z Has data issue: false hasContentIssue false

A Herschel View of Dust Evolution in Protoplanetary Disks

Published online by Cambridge University Press:  06 January 2014

Catherine Espaillat*
Affiliation:
Boston UniversityDepartment of Astronomy 725 Commonwealth Avenue, Boston, MA 02215, USA email: cce@bu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The details of how protoplanetary disks evolve from initially well-mixed distributions of gas and dust to systems composed mostly of rocky planets and gas giants like our own solar system is a fundamental question in astronomy. It is widely accepted that the first step in planet formation is dust grain growth and settling to the disk midplane. This dust evolution in disks can be studied in greater detail with far-infrared and submillimeter wavelength observations, which offer us unique access to the outer disk's deeper layers. Here we present Herschel far-infrared and submillimeter spectra of GM Aur taken with PACS and SPIRE. GM Aur is a transitional disk, whose inner disk hole is proposed to have been cleared by yet unseen planets. By utilizing Herschel data, we can potentially link the properties of dust evolution in the outer disk to dust clearing in the inner disk. In particular, preliminary SED modeling presented here suggests that GM Aur may have a lower gas-to-dust mass ratio than typically assumed for disks, which may be linked to disk clearing by planets. With further study, such Herschel data may provide insight for theoretical modeling of dust evolution and planet formation.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Andrews, S. M. & Williams, J. P. 2005, ApJ, 631, 1134Google Scholar
Andrews, S. M., Wilner, D. J., Hughes, A. M., Qi, C., & Dullemond, C. P. 2009, ApJ, 700, 1502CrossRefGoogle Scholar
Andrews, Wilner, Hughes, Qi, & Dullemond, , 2010, ApJ, 723, 1241CrossRefGoogle Scholar
Andrews, S. M., et al. 2011, ApJ, 732, 42Google Scholar
Beckwith, S. V. W. & Sargent, A. I. 1991, ApJ, 381, 250CrossRefGoogle Scholar
Bergin, E. A., Cleeves, L. I., Gorti, U., et al. 2013, Nature, 493, 644Google Scholar
Calvet, N., et al. 2002, ApJ, 568, 1008Google Scholar
Calvet, N., et al. 2005, ApJL, 630, L185CrossRefGoogle Scholar
Espaillat, C., et al. 2007a, ApJL, 664, L111CrossRefGoogle Scholar
Espaillat, C., et al. 2008, ApJL, 689, L145CrossRefGoogle Scholar
Espaillat, C., et al. 2010, ApJ, 717, 441CrossRefGoogle Scholar
Espaillat, C., Furlan, E., D'Alessio, P., et al. 2011, ApJ, 728, 49Google Scholar
Furlan, E., et al. 2006, ApJS, 165, 568CrossRefGoogle Scholar
Houck, J. R., et al. 2004, ApJS, 154, 18CrossRefGoogle Scholar
Hughes, A. M., et al. 2007, ApJ, 664, 536CrossRefGoogle Scholar
Hughes, A. M., et al. 2009, ApJ, 698, 131CrossRefGoogle Scholar
Kenyon, S. J. & Hartmann, L. 1995, ApJS, 101, 117Google Scholar
Luhman, K. L., Allen, P. R., Espaillat, C., Hartmann, L., & Calvet, N. 2010, ApJS, 186, 111Google Scholar
Paardekooper, S.-J. & Mellema, G. 2004, A&A, 425, L9Google Scholar
Skrutskie, M. F., et al. 1990, AJ, 99, 1187CrossRefGoogle Scholar
Skrutskie, M. F., et al. 2006, AJ, 131, 1163Google Scholar
Strom, K. M., Strom, S. E., Edwards, S., Cabrit, S., & Skrutskie, M. F. 1989, AJ, 97, 1451CrossRefGoogle Scholar
Thi, W.-F., Mathews, G., Ménard, F., et al. 2010, A&A, 518, L125Google Scholar
Weaver, W. B. & Jones, G. 1992, ApJS, 78, 239CrossRefGoogle Scholar
Weintraub, D. A., Sandell, G., & Duncan, W. D. 1989, ApJL, 340, L69CrossRefGoogle Scholar
Werner, M. W., et al. 2004, ApJS, 154, 1Google Scholar
Zhu, Z., Nelson, R. P., Dong, R., Espaillat, C., & Hartmann, L. 2012, ApJ, 755, 6CrossRefGoogle Scholar