Hostname: page-component-7c8c6479df-nwzlb Total loading time: 0 Render date: 2024-03-28T11:16:12.167Z Has data issue: false hasContentIssue false

Young Brown Dwarfs as Giant Exoplanet Analogs

Published online by Cambridge University Press:  06 January 2014

Jacqueline K. Faherty
Affiliation:
Department of Astronomy, Universidad de Chile Cerro Calan, Las Condes Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023
Kelle L. Cruz
Affiliation:
Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023 Department of Physics & Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065, USA
Emily L. Rice
Affiliation:
Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023 Department of Engineering Science & Physics, College of Staten Island, 2800 Victory Blvd., Staten Island, NY 10301USA
Adric Riedel
Affiliation:
Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10023 Department of Physics & Astronomy, Hunter College, 695 Park Avenue, New York, NY 10065, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Young brown dwarfs and directly-imaged exoplanets have enticingly similar photometric and spectroscopic characteristics, indicating that their cool, low gravity atmospheres should be studied in concert. Similarities between the peculiar shaped H band, near and mid-IR photometry as well as location on color magnitude diagrams provide important clues about how to extract physical properties of planets from current brown dwarf observations. In this proceeding we discuss systems newly assigned to 10-150 Myr nearby moving groups, highlight the diversity of this uniform age-calibrated brown dwarf sample, and reflect on their implication for understanding current and future planetary data.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Allers, K. N. & Liu, M. C. 2013, ApJ, 772, 79AGoogle Scholar
Barman, T. S., Macintosh, B., Konopacky, Q. M., & Marois, C. 2011, ApJ, 733, 65Google Scholar
Chauvin, G., Lagrange, A.-M., Dumas, C. P., et al. 2004, A&A, 425, L29Google Scholar
Cruz, K. L., Kirkpatrick, J. D., & Burgasser, A. J. 2009, AJ, 137, 3345CrossRefGoogle Scholar
Faherty, J. K., Burgasser, A. J., Bochanski, J. J., et al. 2011, AJ, 141, 71CrossRefGoogle Scholar
Faherty, J. K., Burgasser, A. J., Cruz, K. L., et al. 2009, AJ, 137, 1CrossRefGoogle Scholar
Faherty, J. K., Burgasser, A. J., Walter, F. M., et al. 2012, ApJ, 752, 56Google Scholar
Faherty, J. K., Burgasser, A. J., West, A. A., et al. 2010, AJ, 139, 176CrossRefGoogle Scholar
Faherty, J. K., Rice, E. L., Cruz, K. L., Mamajek, E. E., & Núñez, A. 2013, AJ, 145, 2Google Scholar
Malo, L., Doyon, R., Lafrenière, D., et al. 2013, ApJ, 762, 88Google Scholar
Madhusudhan, N., Burrows, A., & Currie, T. 2011, ApJ, 737, 34CrossRefGoogle Scholar
Marois, C., Macintosh, B., Barman, T., et al., 2008, Science, 322, 1348CrossRefGoogle Scholar
Rice, E. L., Barman, T., Mclean, I. S., Prato, L., & Kirkpatrick, J. D. 2010a, ApJs, 186, 63CrossRefGoogle Scholar
Rice, E. L., Faherty, J. K., & Cruz, K. L. 2010b, ApJl, 715, L165CrossRefGoogle Scholar
Rodriguez, D. R., Zuckerman, B., Kastner, J. H., et al., 2013, ApJ, 774, 101CrossRefGoogle Scholar