Hostname: page-component-7c8c6479df-xxrs7 Total loading time: 0 Render date: 2024-03-28T15:45:50.867Z Has data issue: false hasContentIssue false

Future prospects in observational galaxy evolution: towards increased resolution

Published online by Cambridge University Press:  17 July 2013

Karl Glazebrook*
Affiliation:
Swinburne University of Technology, PO Box 218, Hawthorn, Vic 3122, Australia email: kglazebrook@swin.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Future prospects in observational galaxy evolution are reviewed from a personal perspective. New insights will especially come from high-redshift integral field kinematic data and similar low-redshift observations in very large and definitive surveys. We will start to systematically probe the mass structures of galaxies and their haloes via lensing from new imaging surveys and upcoming near-IR spectroscopic surveys will finally obtain large numbers of rest frame optical spectra at high-redshift routinely. ALMA will be an important new ingredient, spatially resolving the molecular gas fuelling the high star-formation rates seen in the early Universe.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013 

References

Baldry, I. K., Balogh, M. L., Bower, R. G., Glazebrook, K., Nichol, R. C., Bamford, S. P., & Budavari, T. 2006, MNRAS, 373, 469CrossRefGoogle Scholar
Balogh, M. L., Baldry, I. K., Nichol, R., Miller, C., Bower, R., & Glazebrook, K. 2004, ApJ 615 L101104Google Scholar
Bournaud, F., Elmegreen, B. G. 2009, ApJ, 694, L158Google Scholar
Burkert, A., Naab, T., Johansson, P. H., & Jesseit, R. 2008, ApJ, 685, 897Google Scholar
Chevance, M., Weijmans, A.-M., Damjanov, I., Abraham, R. G., Simard, L., van den Bergh, S., Caris, E., Glazebrook, K. 2012, ApJ, 754, L24Google Scholar
Cimatti, A., Cassata, P., Pozzetti, L., et al. 2008, A&A, 482, 21Google Scholar
Cresci, G., et al. 2009, ApJ, 697, 115Google Scholar
Conselice, C. J., et al. 2013, MNRAS, 430, 1051CrossRefGoogle Scholar
Croom, S. M., Lawrence, J. S., Bland-Hawthorn, J., et al. 2012, MNRAS, 421, 872Google Scholar
Daddi, E., Elbaz, D., Walter, F., et al. 2010, ApJ, 714, L118Google Scholar
Damjanov, I., et al. 2009, ApJ, 695, 101Google Scholar
Dekel, A., et al. 2009, Nature, 457, 451Google Scholar
Ellis, R., Takada, M., Aihara, H., et al. 2012, Extragalactic Science and Cosmology with the Subaru Prime Focus Spectrograph (PFS), arXiv:1206.0737Google Scholar
Flaugher, B. 2005, International Journal of Modern Physics A, 20, 3121Google Scholar
Forbes, D. A., Spitler, L. R., Strader, J., et al. 2011, MNRAS, 413, 2943Google Scholar
Førster Schreiber, N. M., et al. 2009, ApJ, 706, 1364Google Scholar
Genzel, R., et al. 2006, Nature, 442, 786Google Scholar
Gnerucci, et al. 2011, A&A, 533, 124Google Scholar
Green, A. W., et al. 2010, Nature, 467, 684Google Scholar
Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJS, 197, 35Google Scholar
Hills, R. E. & Beasley, A. J. 2008, SPIE, 7012Google Scholar
Hoversten, E. A. & Glazebrook, K. 2008, ApJ, 675, 163Google Scholar
Kennicutt, R. C. Jr. 1998, ApJ, 498, 541Google Scholar
Krumholz, M. R., McKee, C. F., Tumlinson, J. 2009, ApJ, 699, 850Google Scholar
Law, et al. 2007, ApJ, 669, 929Google Scholar
López-Sanjuan, et al. 2012, AJ in press (2012) arXiv:1208.5020Google Scholar
Maihara, et al. 1993, PASP, 105, 940Google Scholar
McGregor, P., et al. 2004, SPIE, 5492, 1033Google Scholar
McLean, I. S., et al. 2010, SPIE, 7735Google Scholar
McPherson, A. M., Born, A. J., Sutherland, W. J., & Emerson, J. P. 2004, SPIE, 5489, 638Google Scholar
Mocz, P., Green, A., Malacari, M., & Glazebrook, K. 2012, MNRAS, 425, 296Google Scholar
Mouhcine, M., Baldry, I. K., Bamford, S. P. 2007, MNRAS, 382, 801Google Scholar
Noeske, K. G., et al. 2007, ApJL, 660, L43CrossRefGoogle Scholar
Peng, Y.-J., Lilly, S. J., Kovač, K., et al. 2010, ApJ, 721, 193Google Scholar
Puech, et al. 2008, A&A, 484, 173Google Scholar
Shapiro, et al. 2008, ApJ, 682, 231Google Scholar
Sharples, R. M., Bender, R., Lehnert, M. D., et al. 2004, SPIE, 5492, 1179Google Scholar
Spitler, L. R., et al. 2011, ApJ, 748, L21Google Scholar
Tacconi, L. J., et al. 2010, Nature, 463, 781Google Scholar
Takada, M. 2010, American Institute of Physics Conference Series, 1279, 120Google Scholar
Thomas, D., Maraston, C., Schawinski, K., Sarzi, M., & Silk, J. 2010, MNRAS, 404, 1775Google Scholar
van Dokkum, P. G., et al. 2008, ApJ, 677, L5Google Scholar
van Dokkum, P. G. & Conroy, C. 2010, Nature, 468, 940Google Scholar
Yang, et al. 2008, A&A, 477, 789Google Scholar