Hostname: page-component-8448b6f56d-xtgtn Total loading time: 0 Render date: 2024-04-19T13:43:23.545Z Has data issue: false hasContentIssue false

EXAMPLES OF RIGID AND FLEXIBLE SEIFERT FIBRED CONE-MANIFOLDS

Published online by Cambridge University Press:  25 February 2013

ALEXANDER KOLPAKOV*
Affiliation:
Department of Mathematics, University of Fribourg, Ch. du Musée, 23, CH-1700 Fribourg, Switzerland e-mail: kolpakov.alexander@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present paper gives an example of a rigid spherical cone-manifold and that of a flexible one, which are both Seifert fibred.

Keywords

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013

References

REFERENCES

1.Boileau, M., Leeb, B. and Porti, J., Uniformization of small 3-orbifolds, C.R. Acad. Sci. Paris Se'r. I Math. 332 (1) (2001), 5762.Google Scholar
2.Boileau, M., Leeb, B. and Porti, J., Geometrization of 3-dimensional orbifolds, Ann. Math. 162 (1) (2005), 195250.Google Scholar
3.Burago, Y., Gromov, M. and Perelman, G., A. D. Aleksandrov spaces with curvature bounded below, Russian Math. Surveys 47 (1992), 158.Google Scholar
4.Burde, G. and Murasugi, K., Links and Seifert fiber spaces, Duke Math. J. 37 (1) (1970), 8993.Google Scholar
5.Casson, A., An example of weak non-rigidity for cone manifolds with vertices, Talk at the Third MSJ regional workshop (Tokyo, 1998).Google Scholar
6.Cooper, D., Hodgson, C. and Kerckhoff, S., Three-dimensional orbifolds and cone-manifolds', vol. 5, Postface by Kojima, S.. Tokyo: Mathematical Society of Japan, 2000. (MSJ Memoirs)Google Scholar
7.Culler, M., Lifting representations to covering groups, Adv. Math. 59 (1) (1986), 6470.CrossRefGoogle Scholar
8.Dunbar, W. D., Geometric orbifolds, Rev. Mat. Univ. Complut. Madrid 1 (1988), 6799.Google Scholar
9.Gluck, H. and Ziller, W., The geometry of the Hopf fibrations, L'Enseign. Math. 32 (1986), 173198.Google Scholar
10.Goldman, W., Ergodic theory on moduli spaces, Ann. Math. 146 (3) (1997), 475507.CrossRefGoogle Scholar
11.Hilden, H. M., Lozano, M. T. and Montesinos-Amilibia, J.-M., Volumes and Chern-Simons invariants of cyclic coverings over rational knots, in Proceedings of the 37th Taniguchi symposium on topology and teichmuller spaces held in Finland, July 1995 (Kojima, S., Matsumoto, Y., Saito, K. and Seppälä, M., Editors) (1996), 3135.Google Scholar
12.Hodgson, C., Degeneration and regeneration of hyperbolic structures on three-manifolds, Thesis (Princeton, 1986).Google Scholar
13.Hodgson, C. and Kerckhoff, S., Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Diff. Geom. 48 (1) (1998), 159.Google Scholar
14.Hopf, H., Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche, Math. Ann. 104 (1931), 637665.Google Scholar
15.Izmestiev, I., Examples of infinitesimally flexible 3-dimensional hyperbolic cone-manifolds, J. Math. Soc. Japan 63 (2) (2011), 581598.Google Scholar
16.Kojima, S., Deformations of hyperbolic 3-cone-manifolds, J. Diff. Geom. 49 (3) (1998), 469516.Google Scholar
17.Kolpakov, A. A. and Mednykh, A. D., Spherical structures on torus knots and links, Siberian Math. J. 50 (5) (2009), 856866.Google Scholar
18.Montcouquiol, G., Deformation of hyperbolic convex polyhedra and 3-cone-manifolds, Geom. Dedicata (2012), arXiv:0903.4743.Google Scholar
19.Mostow, G. D., Quasi-conformal mappings in n-space and the rigidity of hyperbolic space forms, Inst. Hautes Etudes Sci. Publ. Math. 34 (1968), 53104.Google Scholar
20.Porti, J., Regenerating hyperbolic and spherical cone structures from Euclidean ones, Topology 37 (2) (1998), 365392.Google Scholar
21.Porti, J., Regenerating hyperbolic cone structures from Nil, Geom. Topol. 6 (2002), 815852.Google Scholar
22.Porti, J., Spherical cone structures on 2-bridge knots and links, Kobe J. Math. 21 (1–2) (2004), 6170.Google Scholar
23.Porti, J., Regenerating hyperbolic cone 3-manifolds from dimension 2, Ann. Inst. Fourier, arXiv:1003.2494.Google Scholar
24.Prasad, G., Strong rigidity of Q-rank 1 lattices, Invent. Math. 21 (1973), 255286.Google Scholar
25.Ratcliffe, J., Foundations of hyperbolic manifolds (Springer-Verlag, New York, 1994). (Graduate Texts in Math.; 149).CrossRefGoogle Scholar
26.de Rham, G., Reidemeister's torsion invariant and rotations of Sn, Differential analysis, Bombay Colloq. (Oxford University Press, London, 1964), 2736.Google Scholar
27.Rothenberg, M., Torsion invariants and finite transformation groups, Proc. Symposia Pure Math. 32 (1978), 267311.Google Scholar
28.Schlenker, J.-M., Dihedral angles of convex polyhedra, Discrete Comput. Geom. 23 (2000), 409417.Google Scholar
29.Thurston, W. P., Geometry and topology of three-manifolds (Princeton University, 1979). (Princeton University Lecture Notes)Google Scholar
30.Vinberg, E. B., Editor, Geometry II. Spaces of constant curvature (Springer-Verlag, New York, 1993). (Encyclopaedia of Mathematical Sciences; 29)CrossRefGoogle Scholar
31.Weiß, H., Local rigidity of 3-dimensional cone-manifolds, J. Diff. Geom. 71 (3) (2005), 437506.Google Scholar
32.Weiß, H., Global rigidity of 3-dimensional cone-manifolds, J. Diff. Geom. 76 (3) (2007), 495523.Google Scholar
33.Weiß, H., The deformation theory of hyperbolic cone-3-manifolds with cone-angles less than 2π, Geom. Topol., arXiv:0904.4568.Google Scholar