Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T16:22:02.363Z Has data issue: false hasContentIssue false

MEAN VALUE TYPE INEQUALITIES FOR QUASINEARLY SUBHARMONIC FUNCTIONS

Published online by Cambridge University Press:  25 February 2013

OLEKSIY DOVGOSHEY
Affiliation:
Institute of Applied Mathematics and Mechanics of NASU, R. Luxemburg Str. 74, Donetsk 83114, Ukraine e-mail: aleksdov@mail.ru
JUHANI RIIHENTAUS
Affiliation:
Department of Physics and Mathematics, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland e-mail: juhani.riihentaus@gmail.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The mean value inequality is characteristic for upper semi-continuous functions to be subharmonic. Quasinearly subharmonic functions generalise subharmonic functions. We find the necessary and sufficient conditions under which subsets of balls are big enough for the characterisation of non-negative, quasinearly subharmonic functions by mean value inequalities. Similar result is obtained also for generalised mean value inequalities where, instead of balls, we consider arbitrary bounded sets, which have non-void interiors and instead of the volume of ball some functions depending on the radius of this ball.

Type
Research Article
Copyright
Copyright © Glasgow Mathematical Journal Trust 2013

References

REFERENCES

1.Armitage, D. H. and Gardiner, S. J., Classical potential theory (Springer-Verlag, London, 2001).CrossRefGoogle Scholar
2.Brelot, M., Éléments de la théorie classique du potential, second ed. (Centre de Documentation Universitaire, Paris, 1961).Google Scholar
3.Burago, Yu. and Zalgaller, V., Geometric inequalities (Springer-Verlag, New York, 1988).Google Scholar
4.Dieudonne, J., Algèbre linéaire et géometrie Élémentaire. Troisiéme ed. (Hermann, Paris, 1968).Google Scholar
5.Djordjević, O. and Pavlović, M., ${\mathcal{L}}^p$-integrability of the maximal function of a polyharmonic function, J. Math. Anal. Appl. 336 (2007), 411417.CrossRefGoogle Scholar
6.Dovgoshey, O. and Riihentaus, J., Bi-Lipschitz mappings and quasinearly subharmonic functions, Internat. J. Math. and Math. Sci. (2010), ID382179, 8 p.Google Scholar
7.Gehring, F. W. and Martio, O., Quasiextremal distance domains and extension of quasiconformal mappings, J. D'Analyse Mathématique 45 (1985), 181206.CrossRefGoogle Scholar
8.Hervé, M., Analytic and plurisubharmonic functions in finite and infinite dimensional spaces. Lecture Notes in Mathematics, vol. 198 (Springer, Berlin, Heidelberg, 1971).Google Scholar
9.Kojić, V., Quasi-nearly subharmonic functions and conformal mappings. Filomat. 21 (2) (2007), 243249.CrossRefGoogle Scholar
10.Pavlović, M., On subharmonic behavior and oscillation of functions on balls in ${\mathbb{R}}^n$, Publ. Inst. Math. (Beograd) 55 (69) (1994), 1822.Google Scholar
11.Pavlović, M. and Riihentaus, J., Classes of quasi-nearly subharmonic functions. Potential Anal. 29 (2008), 89104.Google Scholar
12.Riihentaus, J., On a theorem of Avanissian–Arsove. Expo. Math. 7 (1989), 6972.Google Scholar
13.Riihentaus, J., Subharmonic functions: Non-tangential and tangential boundary behavior, in Function spaces, differential operators and nonlinear analysis (FSDONA'99), Proceedings of the syöte conference 1999, (Mustonen, V. and Rákosnik, J. Editors), Math. Inst. (Czech Acad. Science, Praha, 2000), 229238.Google Scholar
14.Riihentaus, J., A generalized mean value inequality for subharmonic functions, Expo. Math. 19 (2001), 187190.Google Scholar
15.Riihentaus, J., A weighted boundary limit result for subharmonic functions, Adv. Algebra and Analysis, 1 (2006), 2738.Google Scholar
16.Riihentaus, J., Separately quasi-nearly subharmonic functions, in Complex analysis and potential theory, Proceedings of the conference satellite to ICM 2006 (Azeroğlu, T. A. and Tamrazov, P. M. Editors), Gebze Institute of Technology, Gebze, Turkey, September 8–14, 2006 (World Scientific, Singapore, 2007), 156165.Google Scholar
17.Riihentaus, J., Subharmonic functions, generalizations and separately subharmonic functions. The XIVth Conference on Analytic Functions, July 22–28, 2007, Chełm, Poland, in Scientific Bulletin of Chełm, Section of Mathematics and Computer Science, 2 (2007), 4976. (ISBN 978-83-61149-24-8) (arXiv:math/0610259v5 [math.AP] 8 October 2008).Google Scholar
18.Riihentaus, J., On an inequality related to the radial growth of subharmonic functions, Cubo, 11 (4) (2009), 127136.Google Scholar
19.Thomson, B. S., Real functions. Lecture Notes in Mathematics, vol. 1170 (Springer-Verlag, Berlin, Heidelberg, 1985).Google Scholar