Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-23T12:48:09.617Z Has data issue: false hasContentIssue false

The Galactic Millisecond Pulsar Population

Published online by Cambridge University Press:  20 March 2013

Duncan R. Lorimer*
Affiliation:
Department of Physics, West Virginia University, USA National Radio Astronomy Observatory, Green Bank, USA email: Duncan.Lorimer@mail.wvu.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Among the current sample of over 2000 radio pulsars known primarily in the disk of our Galaxy, millisecond pulsars now number almost 200. Due to the phenomenal success of blind surveys of the Galactic field, and targeted searches of Fermi gamma-ray sources, for the first time in over a decade, Galactic millisecond pulsars now outnumber their counterparts in globular clusters! In this paper, I briefly review earlier results from studies of the Galactic millisecond pulsar population and present new constraints based on a sample of 60 millisecond pulsars discovered by 20 cm Parkes multibeam surveys. I present a simple model of the population containing ~ 30,000 potentially observable millisecond pulsars with a luminosity function, radial distribution and scale height that matches the observed sample of objects. This study represents only a first step towards a more complete understanding of the parent population of millisecond pulsars in the Galaxy and I conclude with some suggestions for further study in this area.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Bagchi, M., Lorimer, D. R., & Chennamangalam, J. 2011, MNRAS, 418, 477CrossRefGoogle Scholar
Belcynski, K.et al. 2008, ApJS, 174, 223CrossRefGoogle Scholar
Boyles, J.et al. 2011, ApJ, 742, 51CrossRefGoogle Scholar
Burgay, M.et al. 2006, MNRAS, 368, 283CrossRefGoogle Scholar
Chennamangalam, J. 2012, MNRAS, in pressGoogle Scholar
Cordes, J. M. & Chernoff, D. F., ApJ, 482, 971Google Scholar
Cordes, J. M. & Lazio, T. J. W., astro-ph/0207156Google Scholar
Eatough, R. P.et al. 2010, MNRAS, 407, 2443CrossRefGoogle Scholar
Edwards, R. T.et al. 2001, MNRAS, 326, 358Google Scholar
Faucher-Giguère, C. A. & Kaspi, V. M., ApJ, 643, 332Google Scholar
Gunn, J. E. & Ostriker, J. P. 1970, ApJ, 160, 979CrossRefGoogle Scholar
Jacoby, B. A.et al. 2009, ApJ, 699, 2009Google Scholar
Johnston, S. & Bailes, M. 1991, MNRAS, 252, 277Google Scholar
Keith, M.et al. 2009, MNRAS, 395, 837Google Scholar
Keith, M.et al. 2010, MNRAS, 409, 619Google Scholar
Kiziltan, B. & Thorsett, S. E. 2010, ApJ, 715, 335Google Scholar
Kulkarni, S. R. & Narayan, R. 1988, ApJ, 335, 755Google Scholar
Lorimer, D. R. 1995, MNRAS, 274, 300Google Scholar
Lorimer, D. R. 2009, Astrophysics and Space Science Library, 357, 1Google Scholar
Lorimer, D. R. 2011, Astrophysics and Space Science Proceedings 21, (arXiv:1008.1928)Google Scholar
Lorimer, D. R., Camilo, F., & McLaughlin, M. A. 2013, MNRAS in preparationGoogle Scholar
Lorimer, D. R.et al. 2006, MNRAS, 372, 777Google Scholar
Lyne, A. G.et al. 2006, MNRAS, 295, 743Google Scholar
Manchester, R. N.et al. 2001, MNRAS, 328, 17CrossRefGoogle Scholar
Mickaliger, M. B.et al. 2012, ApJ, in press (arXiv:1206.2895)Google Scholar
Rathnasree, N. 1993, MNRAS, 260, 717Google Scholar
Ray, P. 2012, arXiv1205.3089Google Scholar
Ridley, J. P. & Lorimer, D. R. 2010, MNRAS, 404, 1081Google Scholar
Schnitzeler, D. H. F. M. 2012, MNRAS, in press (arXiv:1208.3045)Google Scholar
Story, S. A., Gonthier, P. L., & Harding, A. K. 2007, ApJ, 671, 713Google Scholar
Tauris, T. M. & Bailes, M. 1996, A&A, 315, 432Google Scholar
Tauris, T. M., Langer, N., & Kramer, M. 2012, MNRAS, 425, 1601CrossRefGoogle Scholar
Wolszczan, A. 1991, Nature, 350, 688Google Scholar