Hostname: page-component-7c8c6479df-8mjnm Total loading time: 0 Render date: 2024-03-28T18:14:32.969Z Has data issue: false hasContentIssue false

Revealing the state space of turbulent pipe flow by symmetry reduction

Published online by Cambridge University Press:  19 March 2013

A. P. Willis*
Affiliation:
School of Mathematics and Statistics, University of Sheffield, Sheffield S3 7RH, UK
P. Cvitanović
Affiliation:
School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany
M. Avila
Affiliation:
Max Planck Institute for Dynamics and Self-Organization (MPIDS), 37077 Göttingen, Germany Institute of Fluid Mechanics, Fridriech-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
*
Email address for correspondence: ashleypwillis@gmail.com

Abstract

Symmetry reduction by the method of slices is applied to pipe flow in order to obtain a quotient of the streamwise translation and azimuthal rotation symmetries of turbulent flow states. Within the symmetry-reduced state space, all travelling wave solutions reduce to equilibria, and all relative periodic orbits reduce to periodic orbits. Projections of these solutions and their unstable manifolds from their infinite-dimensional symmetry-reduced state space onto suitably chosen two- or three-dimensional subspaces reveal their interrelations and the role they play in organizing turbulence in wall-bounded shear flows. Visualizations of the flow within the slice and its linearization at equilibria enable us to trace out the unstable manifolds, determine close recurrences, identify connections between different travelling wave solutions and find, for the first time for pipe flows, relative periodic orbits that are embedded within the chaotic saddle, which capture turbulent dynamics at transitional Reynolds numbers.

Type
Papers
Copyright
©2013 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auerbach, D., Cvitanović, P., Eckmann, J.-P., Gunaratne, G. & Procaccia, I. 1987 Exploring chaotic motion through periodic orbits. Phys. Rev. Lett. 58, 23.CrossRefGoogle ScholarPubMed
Avila, K., Moxey, D., de Lozar, A., Avila, M., Barkley, D. & Hof, B. 2011 The onset of turbulence in pipe flow. Science 333, 192196.CrossRefGoogle ScholarPubMed
Avila, M., Willis, A. P. & Hof, B. 2010 On the transient nature of localized pipe flow turbulence. J. Fluid Mech. 646, 127136.Google Scholar
Beyn, W.-J. & Thümmler, V. 2004 Freezing solutions of equivariant evolution equations. SIAM J. Appl. Dyn. Syst. 3, 85116.Google Scholar
Cartan, É. 1935 La méthode du repère mobile, la théorie des groupes continus, et les espaces généralisés. In Exposés de Géométrie, vol. 5. Hermann.Google Scholar
Christiansen, F., Cvitanović, P. & Putkaradze, V. 1997 Spatio-temporal chaos in terms of unstable recurrent patterns. Nonlinearity 10, 5570.CrossRefGoogle Scholar
Cvitanović, P. 2007 Continuous symmetry reduced trace formulas. www.cns.gatech.edu/predrag/Cvio7.pdf.Google Scholar
Cvitanović, P., Artuso, R., Mainieri, R., Tanner, G. & Vattay, G. 2012 Chaos: Classical and Quantum. Niels Bohr Inst., www.chaosbook.org.Google Scholar
Cvitanović, P., Borrero-Echeverry, D., Carroll, K., Robbins, B. & Siminos, E. 2012 Cartography of high-dimensional flows: a visual guide to sections and slices. Chaos 22, 047506.Google Scholar
Cvitanović, P., Davidchack, R. L. & Siminos, E. 2009 On the state space geometry of the Kuramoto–Sivashinsky flow in a periodic domain. SIAM J. Appl. Dyn. Syst. 9, 133.CrossRefGoogle Scholar
Cvitanović, P. & Gibson, J. F. 2010 Geometry of turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. T 142, 014007.CrossRefGoogle Scholar
Duguet, Y., Pringle, C. C. T. & Kerswell, R. R. 2008a Relative periodic orbits in transitional pipe flow. Phys. Fluids 20, 114102.CrossRefGoogle Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008b Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.Google Scholar
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Fels, M. & Olver, P. J. 1998 Moving coframes: I. A practical algorithm. Acta Appl. Math. 51, 161213.Google Scholar
Fels, M. & Olver, P. J. 1999 Moving coframes: II. Regularization and theoretical foundations. Acta Appl. Math. 55, 127208.Google Scholar
Frisch, U. 1996 Turbulence. Cambridge University Press.Google Scholar
Froehlich, S. & Cvitanović, P. 2011 Reduction of continuous symmetries of chaotic flows by the method of slices. Commun. Nonlinear Sci. Numer. Simul. 17, 20742084.Google Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.CrossRefGoogle Scholar
Gibson, J. F., Halcrow, J. & Cvitanović, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 124.CrossRefGoogle Scholar
Greene, J. M. & Kim, J.-S. 1988 The steady states of the Kuramoto–Sivashinsky equation. Physica D 33, 99120.Google Scholar
Halcrow, J., Gibson, J. F., Cvitanović, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365376.Google Scholar
Hamilton, J. M., Kim, J. & Waleffe, F. 1995 Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech. 287, 317348.Google Scholar
Hof, B., De Lozar, A., Kuik, D. J. & Westerweel, J. 2008 Repeller or attractor? Selecting the dynamical model for the onset of turbulence in pipe flow. Phys. Rev. Lett. 101, 214501.CrossRefGoogle ScholarPubMed
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear travelling waves in turbulent pipe flow. Science 305, 15941598.Google Scholar
Hopf, E. 1948 A mathematical example displaying features of turbulence. Comm. Pure Appl. Maths 1, 303322.CrossRefGoogle Scholar
Huygens, C. 1967 L’Horloge à pendule de 1673. Swets & Zeitlinger.Google Scholar
Jiménez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.CrossRefGoogle Scholar
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291300.Google Scholar
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech 44, 203225.Google Scholar
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.Google Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11, 417422.CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.Google Scholar
Kreilos, T. & Eckhardt, B. 2012 Periodic orbits near onset of chaos in plane Couette flow. Chaos 22, 047505.CrossRefGoogle ScholarPubMed
Lan, Y. & Cvitanović, P. 2008 Unstable recurrent patterns in Kuramoto–Sivashinsky dynamics. Phys. Rev. E 78, 026208.CrossRefGoogle ScholarPubMed
Lombardi, M., Caulfield, C. P., Cossu, C., Pesci, A. I. & Goldstein, R. E. 2011 Growth and instability of a laminar plume in a strongly stratified environment. J. Fluid Mech. 671, 184206.Google Scholar
Mellibovsky, F. & Eckhardt, B. 2012 From travelling waves to mild chaos: A supercritical bifurcation cascade in pipe flow. J. Fluid Mech. 709, 149190.CrossRefGoogle Scholar
Mellibovsky, F. & Eckhardt, B. 2011 Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow. J. Fluid Mech. 670, 96129.CrossRefGoogle Scholar
Mullin, T. & Kerswell, R. R. 2005 Non-uniqueness of Solutions to the Navier–Stokes Equations and their Connection with Laminar–Turbulent Transition. Kluwer.Google Scholar
Olver, P. J. 1999 Classical Invariant Theory. Cambridge University Press.Google Scholar
Poincaré, H. 1896 Sur les solutions périodiques et le principe de moindre action. C. R. Acad. Sci. Paris 123, 915918.Google Scholar
Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. A 367, 457472.CrossRefGoogle ScholarPubMed
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical, and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 99, 074502.Google Scholar
Rand, D. 1982 Dynamics and symmetry – predictions for modulated waves in rotating fluids. Arch. Rational Mech. Anal. 79, 13.CrossRefGoogle Scholar
Recke, L., Samoilenko, A., Tkachenko, V. & Yanchuk, S. 2011 Frequency locking by external forcing in systems with rotational symmetry. Arxiv preprint. arXiv:1108.5990.CrossRefGoogle Scholar
Rowley, C. W. & Marsden, J. E. 2000 Reconstruction equations and the Karhunen–Loéve expansion for systems with symmetry. Physica D 142, 119.CrossRefGoogle Scholar
Schneider, T. M., Eckhardt, B. & Vollmer, J. 2007 Statistical analysis of coherent structures in transitional pipe flow. Phys. Rev. E 75, 066313.Google Scholar
Schneider, T. M., Gibson, J. F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104, 104501.Google Scholar
Siminos, E. & Cvitanović, P. 2011 Continuous symmetry reduction and return maps for high-dimensional flows. Physica D 240, 187198.CrossRefGoogle Scholar
Tempelmann, D., Hanifi, A. & Henningson, D. S. 2010 Spatial optimal growth in three-dimensional boundary layers. J. Fluid Mech. 646, 537.Google Scholar
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.CrossRefGoogle Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: traveling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
Willis, A. P. & Kerswell, R. R. 2008 Coherent structures in localised and global pipe turbulence. Phys. Rev. Lett. 100, 124501.Google Scholar

Willis et al. supplementary movie

Cross-section movie for the orbit extracted from turbulent flow, RPO$_{36.72}$. Within the slice, the orbit is seen to close after one period. It exhibits quiescent and bursting phases.

Download Willis et al. supplementary movie(Video)
Video 4.8 MB