Hostname: page-component-7c8c6479df-r7xzm Total loading time: 0 Render date: 2024-03-29T15:40:53.519Z Has data issue: false hasContentIssue false

Measuring H0 from the 6dF Galaxy Survey and future low-redshift surveys

Published online by Cambridge University Press:  26 February 2013

Matthew Colless
Affiliation:
Australian Astronomical Observatory, P. O. Box 915, North Ryde, NSW 1670, Australia email: colless@aao.gov.au
Florian Beutler
Affiliation:
International Centre for Radio Astronomy Research, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA email: fbeutler@lbl.gov
Chris Blake
Affiliation:
Centre for Astrophysics & Supercomputing, Swinburne University of Technology, P. O. Box 218, Hawthorn, VIC 3122, Australia email: cblake@astro.swin.edu.au
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Baryon acoustic oscillations (BAO) at low redshift provide a precise and largely model-independent way to measure the Hubble constant, H0. The 6dF Galaxy Survey measurement of the BAO scale gives a value of H0 = 67 ± 3.2 km s−1 Mpc−1, achieving a 1σ precision of 5%. With improved analysis techniques, the planned wallaby (Hi) and taipan (optical) redshift surveys are predicted to measure H0 to 1–3% precision.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Beutler, F., Blake, C., Colless, M., et al. 2011, MNRAS, 416, 3017Google Scholar
Blake, C. & Glazebrook, K. 2003, ApJ, 594, 665Google Scholar
Duffy, A. R., Meyer, M. J., Staveley-Smith, L., et al. 2012, MNRAS, 426, 3385CrossRefGoogle Scholar
Eisenstein, D. J., Zehavi, I., Hogg, D. W., et al. 2005, ApJ, 633, 560Google Scholar
Feldman, H. A., Kaiser, N., & Peacock, J. A. 1994, ApJ, 426, 23Google Scholar
Jarrett, T. H., Chester, T., Cutri, R., Schneider, S., Skrutskie, M., & Huchra, J. P. 2000, AJ, 119, 2498Google Scholar
Jones, D. H., Saunders, W., Colless, M., et al. 2004, MNRAS, 355, 747Google Scholar
Jones, D. H., Peterson, B. A., Colless, M., & Saunders, W. 2006, MNRAS, 369, 25Google Scholar
Jones, D. H., Read, M. A., Saunders, W., et al. 2009, MNRAS, 399, 683Google Scholar
Komatsu, E., Smith, K. M., Dunkley, J., et al. 2011, ApJS, 192, 18Google Scholar
Landy, S. D. & Szalay, A. S. 1993, ApJ, 412, 64Google Scholar
Padmanabhan, N., Xu, X., Eisenstein, D. J., Scalzo, R., Cuesta, A. J., Mehta, K. T., & Kazin, E. 2012, MNRAS, submitted (arXiv:1202.0090)Google Scholar
Riess, A. G., Macri, L., Casertano, S., et al. 2011, ApJ, 730, 119Google Scholar
Seo, H. J. & Eisenstein, D. J. 2003, ApJ, 598, 720Google Scholar