Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-17T09:42:13.677Z Has data issue: false hasContentIssue false

Feeding and Small-scale Feedback in Low-Luminosity AGNs

Published online by Cambridge University Press:  21 February 2013

Roman V. Shcherbakov
Affiliation:
Department of Astronomy, University of Maryland, College Park, MD 20742-2421, USA email: roman@astro.umd.edu Hubble Fellow
Frederick K. Baganoff
Affiliation:
Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA, 02139
Ka-Wah Wong
Affiliation:
Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
Jimmy Irwin
Affiliation:
Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The unmatched X-ray resolution of Chandra allows probing the gas flow near quiescent supermassive black holes (BHs). The radius of BH gravitational influence on gas, called the Bondi radius, is resolved in Sgr A* and NGC 3115. Shallow accretion flow density profiles nr−β with β=0.7–1.0 were found for Sgr A* and NGC 3115 with the help of Chandra. We construct self-consistent models with gas feeding and dynamics from near the Bondi radius to the event horizon to explain the observations. Gas is mainly supplied to the region by hot colliding stellar winds. Small-scale feedback such as conduction effectively flattens the density profile from steep β=1.5 in a Bondi flow. We further constrain density and temperature profiles using the observed radio/sub-mm radiation emitted near the event horizon. We discuss the present state of our numerical model and its qualitative features, such as the role of the galactic gravitational potential and the random motion of wind-emitting stars.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Blandford, R. D. & Begelman, M. C. 1999, MNRAS, 303, L1CrossRefGoogle Scholar
Ciotti, L., D'Ercole, A., Pellegrini, S., & Renzini, A. 1991, ApJ, 376, 380CrossRefGoogle Scholar
Crane, P. C., Dickel, J. R., & Cowan, J. J. 1992, ApJ, 390, L9Google Scholar
Cuadra, J., Nayakshin, S., & Martins, F. 2008, MNRAS, 383, 458Google Scholar
Foster, A. R., Ji, L., Smith, R. K., & Brickhouse, N. S. 2012, ApJ, 756, 128Google Scholar
Greene, J. E. & Ho, L. C. 2007, ApJ, 667, 131Google Scholar
Ho, L. C. 2008, Ann. Rev. Astron. Astr., 46, 475Google Scholar
Ho, L. C. 2009, ApJ, 699, 626Google Scholar
Hopkins, P. F. & Hernquist, L. 2006, Ap. J. Supp., 166, 1Google Scholar
Hopkins, P. F. & Hernquist, L. 2009, ApJ, 698, 1550Google Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., Di Matteo, T., Robertson, B., & Springel, V. 2006, Ap. J. Supp., 163, 1CrossRefGoogle Scholar
Hopkins, P. F., Hernquist, L., Cox, T. J., & Kereš, D. 2008, Ap. J. Supp., 175, 356Google Scholar
Jungwiert, B., Combes, F., & Palouš, J. 2001, Astron. and Astrophys., 376, 85CrossRefGoogle Scholar
Kormendy, J. & Richstone, D. 1995, Ann. Rev. Astron. Astr., 33, 581CrossRefGoogle Scholar
Leitner, S. N. & Kravtsov, A. V. 2011, ApJ, 734, 48Google Scholar
Martins, F., Genzel, R., Hillier, D. J., Eisenhauer, F., Paumard, T., Gillessen, S., Ott, T., & Trippe, S. 2007, Astron. and Astrophys., 468, 233Google Scholar
Narayan, R. 2002, in Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, ed. Gilfanov, M., Sunyeav, R., & Churazov, E., 405Google Scholar
Narayan, R., Igumenshchev, I. V., & Abramowicz, M. A. 2000, ApJ, 539, 798CrossRefGoogle Scholar
Narayan, R., Mahadevan, R., & Quataert, E. 1998, in Theory of Black Hole Accretion Disks, ed. Abramowicz, M. A., Bjornsson, G., & Pringle, J. E., 148Google Scholar
Narayan, R. & Medvedev, M. V. 2001, ApJ, 562, L129Google Scholar
Padovani, P. & Matteucci, F. 1993, ApJ, 416, 26Google Scholar
Pellegrini, S. 2005, ApJ, 624, 155Google Scholar
Quataert, E. 2001, in Astronomical Society of the Pacific Conference Series, Vol. 224, Probing the Physics of Active Galactic Nuclei, ed. Peterson, B., Pogge, R., & Polidan, R., 71Google Scholar
Quataert, E. & Gruzinov, A. 2000, ApJ, 539, 809Google Scholar
Ruszkowski, M. & Oh, S. P. 2011, MNRAS, 414, 1493Google Scholar
Schödel, R., Ott, T., Genzel, R., Eckart, A., Mouawad, N., & Alexander, T. 2003, ApJ, 596, 1015Google Scholar
Shakura, N. I. & Sunyaev, R. A. 1973, Astron. and Astrophys., 24, 337Google Scholar
Sharma, P., Quataert, E., & Stone, J. M. 2008, MNRAS, 389, 1815Google Scholar
Shcherbakov, R. V. & Baganoff, F. K. 2010, ApJ, 716, 504Google Scholar
Shcherbakov, R. V., Penna, R. F., & McKinney, J. C. 2012, ApJ, 755, 133Google Scholar
Wong, Ka-Wah, Irwin, Jimmy A., Yukita, Mihoko, Million, Evan, Mathews, T., William, G., & Bregman, Joel N. 2011, ApJ, 736, 23Google Scholar