Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T13:20:38.467Z Has data issue: false hasContentIssue false

Coupling of the accretion disk and corona around black holes

Published online by Cambridge University Press:  21 February 2013

B. F. Liu*
Affiliation:
National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, Chaoyang District, Beijing 100012, China email: bfliu@nao.cas.cn
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The interaction between a hot corona and a cold thin disk can drive cold gas evaporating into the corona or hot gas condensing into the thin disk. The evaporation is caused by heat conduction downwards to the disk; while condensation is caused by overcooling of corona gas through inverse Compton scattering. Evaporation occurs at low accretion rates when the corona cannot efficiently radiate the viscous heat, thereby part of which is conducted down and heats up gas. Condensation occurs at high accretion rates when the Compton cooling of disk photons is strong enough to efficiently cool the corona gas. An important consequence of the evaporation is complete removal of the disk at a certain distances. In contrast, condensation can lead to a weak corona or complete collapse of the corona. This causes the observed transitions between various spectral states, at which the accretion flows are dominated respectively by ADAF, disk+ corona, and thin disk from low to high accretion rates, providing a natural explanation to the low, intermediate and high spectral states in BHXRBs, as well as their transitions. The same process can also be applied to accretion around supermassive black holes.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Cao, X. 2009, MNRAS, 394, 207CrossRefGoogle Scholar
Dunn, R. J. H., Fender, R. P., Körding, E. G., Cabanac, C., & Belloni, T.: 2008, MNRAS, 387, 545Google Scholar
Liu, J. Y., Liu, B. F., Qiao, E. L., & Mineshige, S., 2012, ApJ, 754: 81Google Scholar
Liu, B. F., Yuan, W., Meyer, F., Meyer-Hofmeister, E., & Xie, G. Z. 1999, ApJ, 527, L17CrossRefGoogle Scholar
Liu, B. F., Mineshige, S., Meyer, F., Meyer-Hofmeister, E., & Kawaguchi, T. 2002a, ApJ, 575, 117Google Scholar
Liu, B. F., Mineshige, S., & Shibata, K. 2002b, ApJ, 572, L173CrossRefGoogle Scholar
Liu, B. F., Meyer, F., & Meyer-Hofmeister, E. 2005, A&A, 442, 555Google Scholar
Liu, B. F., Meyer, F., & Meyer-Hofmeister, E. 2006, A&A, 454, L9Google Scholar
Liu, B. F., Taam, R. E., Meyer-Hofmeister, E., & Meyer, F. 2007, ApJ, 671, 695CrossRefGoogle Scholar
Liu, B. F. & Taam, R. E., 2009, ApJ, 707, 233CrossRefGoogle Scholar
Liu, B. F., Done, C. & Taam, , 2011, ApJ, 726: 10CrossRefGoogle Scholar
Liu, B. F. & Taam, R. E., 2012, in preparation.Google Scholar
Meyer, F., Liu, B. F., & Meyer-Hofmeister, E. 2000a, A&A, 361, 175Google Scholar
Meyer, F., Liu, B. F., & Meyer-Hofmeister, E. 2000b, A&A, 354, L67Google Scholar
Meyer, F., Liu, B. F., & Meyer-Hofmeister, E. 2007, A&A, 463, 1Google Scholar
Meyer-Hofmeister, E., Liu, B. F., & Meyer, F. 2005, A&A, 432, 181Google Scholar
Meyer-Hofmeister, E., Liu, B. F., & Meyer, F. 2009, A&A, 508, 329Google Scholar
Meyer-Hofmeister, E., Liu, B. F., & Meyer, F. 2012, A&A, 544, A87Google Scholar
Qian, L., Liu, B. F., & Wu, X. B., 2007, ApJ, 668, 1145Google Scholar
Qiao, E. & Liu, B. 2009, PASJ, 61, 403CrossRefGoogle Scholar
Qiao, E. & Liu, B. 2010, PASJ, 62, 661Google Scholar
Qiao, E. & Liu, B. F. 2012, ApJ 744: 145Google Scholar
Taam, R. E., Liu, B. F., Meyer, F., & Meyer-Hofmeister, , 2008, ApJ, 688, 527Google Scholar
Taam, R. E., Liu, B. F., Yuan, W., & Qiao, E. 2012, ApJ, in pressGoogle Scholar