Hostname: page-component-7c8c6479df-27gpq Total loading time: 0 Render date: 2024-03-27T23:41:54.141Z Has data issue: false hasContentIssue false

Type Ia Supernova Models and Progenitor Scenarios

Published online by Cambridge University Press:  17 January 2013

Ken'ichi Nomoto*
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Yasuomi Kamiya
Affiliation:
Institute for the Physics and Mathematics of the Universe, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan Department of Astronomy, Graduate School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
Naohito Nakasato
Affiliation:
Department of Computer Science and Engineering, University of Aizu, Aizu-Wakamatsu, Fukushima 965-8580, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We review some recent developments in theoretical studies on the connection between the progenitor systems of Type Ia supernovae (SNe Ia) and the explosion mechanisms. (1) DD-subCh: In the merging of double C+O white dwarfs (DD scenario), if the carbon detonation is induced near the white dwarf (WD) surface in the early dynamical phase, it could result in the (effectively) sub-Chandrasekhar mass explosion. (2) DD-Ch: If no surface C-detonation is ignited, the WD could grow until the Chandrasekhar mass is reached, but the outcome depends on whether the quiescent carbon shell burning is ignited and burns C+O into O+Ne+Mg. (3) SD-subCh: In the single degenerate (SD) scenario, if the He shell-flashes grow strong to induce a He detonation, it leads to the sub-Chandra explosion. (4) SD-Ch: If the He-shell flashes are not strong enough, they still produce interesting amounts of Si and S near the surface of the C+O WD before the explosion. In the Chandra mass explosion, the central density is high enough to produce electron capture elements, e.g., stable 58Ni. Observations of the emission lines of Ni in the nebular spectra provides useful diagnostics of the sub-Chandra vs. Chandra issue. The recent observations of relatively low velocity carbon near the surface of SNe Ia provide also an interesting constraint on the explosion models.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2013

References

Arnett, W. D. 1996, Nucleosynthesis and Supernovae (Princeton: Princeton Univ. Press)Google Scholar
Benz, A. O., Cameron, A. G. W., Press, W. H., & Bowers, R. L. 1990, ApJ, 348, 647Google Scholar
Dan, M., Rosswog, S., Guillochon, J., & Ramirez-Ruiz, E. 2011, ApJ, 737, 89CrossRefGoogle Scholar
Di Stefano, , Voss, R., & Claeys, J. S. W. 2011, ApJ, 738, L1Google Scholar
Folatelli, G., Phillips, M. M., Morrell, N., Tanaka, M., Maeda, K., Nomoto, K., et al. 2011, ApJ, submittedGoogle Scholar
Guerrero, J., Garcis-Berro, E., & Isern, J. 2004, A&A, 413, 257Google Scholar
Hachisu, I., Kato, M., Saio, H., & Nomoto, K. 2011, ApJ, in press (arXiv:1106.3510)Google Scholar
Hillebrandt, W. & Niemeyer, J. 2000, ARAA, 38, 191Google Scholar
Ilkov, M. & Soker, N. 2011, arXiv:1106.2027Google Scholar
Iwamoto, K., Nomoto, K., & Thielemann, F.-K. 1999, ApJS, 54, 335Google Scholar
Iben, I. Jr. & Tutukov, A. V. 1984, ApJS, 54, 335Google Scholar
Justham, S. 2011, ApJ, 730, L34CrossRefGoogle Scholar
Kasen, D., Röpke, F., & Woosley, S. 2009, Nature, 460, 869CrossRefGoogle Scholar
Kamiya, Y. & Nomoto, K. 2011, in preparationGoogle Scholar
Kato, M., Hachisu, I., Kiyota, S., & Saio, H. 2008, ApJ, 684, 1366CrossRefGoogle Scholar
Kawai, Y., Saio, H., & Nomoto, K. 1987, ApJ, 315, 229CrossRefGoogle Scholar
Livio, M. 2000, Type Ia Supernovae: Theory and Cosmology (Cambridge Univ. Press), 33Google Scholar
Maeda, K., et al. 2010a, ApJ, 394, 239Google Scholar
Maeda, K., et al. 2010b, Nature, 466, 82Google Scholar
Nakasato, N. & Nomoto, K. 2003, ApJ, 588, 842Google Scholar
Nakasato, N. & Nomoto, K. 2011, in preparationGoogle Scholar
Nomoto, K. 1984, ApJ, 277, 791Google Scholar
Nomoto, K. 1987, ApJ, 322, 206Google Scholar
Nomoto, K. & Iben, I. Jr. 1985, ApJ, 297, 53Google Scholar
Nomoto, K., Iwamoto, K., & Kishimoto, N. 1997, Science, 276, 1378Google Scholar
Nomoto, K., Kamiya, Y., Nakasato, N., Hachisu, I., & Kato, M. 2009, in AIPC 1111: Probing Stellar Populations out to the Distant Universe: Cefalu 2008 (AIP), 267Google Scholar
Nomoto, K. & Kondo, Y. 1991, ApJ, 367, L19Google Scholar
Nomoto, K., Sugimoto, D., & Neo, , 1976, Ap. Sp. Sci., 39, L37CrossRefGoogle Scholar
Nomoto, K., Thielemann, F.-K., & Yokoi, K. 1984, ApJ, 286, 644Google Scholar
Nomoto, K., Umeda, H., Kobayashi, C., Hachisu, I., Kato, M., & Tsujimoto, T. 2000, in AIPC 522: Cosmic Explosions, ed. Holt, S. S. & Zhang, W. W. (AIP), 35 (astro-ph/0003134)Google Scholar
Pakmor, R., et al. 2010, Nature, 463, 61Google Scholar
Pakmor, R., et al. 2011, Supernovae and their Host Galaxies, Sydney 2011Google Scholar
Parrent, J. T., et al. 2011, ApJ, 732, 30CrossRefGoogle Scholar
Rosswog, S., Davis, M. B., Thielemann, F.-K., & Piran, T. 2000, A&A, 360, 171Google Scholar
Saio, H. & Nomoto, K. 1985, A&A, 150, L21Google Scholar
Saio, H. & Nomoto, K. 1998, ApJ, 500, 388Google Scholar
Segretain, L., Chabrier, G., & Mochkovitch, R. 1997, ApJ, 481, 355CrossRefGoogle Scholar
Shen, K. & Bildsten, L. 2007, ApJ, 660, 1444Google Scholar
Shen, K., Bildsten, L., Kasen, D., & Quataert, E. 2011, ApJ, submitted (arXiv:1108.4036)Google Scholar
Shigeyama, T., Nomoto, K., Yamaoka, H. & Thielemann, F.-K. 1992, ApJ, 386, L13CrossRefGoogle Scholar
Shioya, T., Sano, T., & Takabe, H. 2007, PASJ, 59, 753CrossRefGoogle Scholar
Timmes, F. X. & Swesty, F. D. 2000, ApJS, 126, 501CrossRefGoogle Scholar
Uenishi, T., Nomoto, K., & Hachisu, I. 2003, ApJ, 595, 1094Google Scholar
Usuda, T., Krause, O., Tanaka, M., Hattori, T., Goto, M., Birkmann, S. M., & Nomoto, K. 2011, in these ProceedingsGoogle Scholar
Webbink, R. F. 1984, ApJ, 277, 355CrossRefGoogle Scholar
Yoon, S.-C. & Langer, N. 2004, A&A, 419, 623Google Scholar
Yoon, S.-C., Podsiadlowski, Ph., & Rosswog, S. 2007, MNRAS, 380, 933Google Scholar