Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T00:00:33.981Z Has data issue: false hasContentIssue false

Magnetic fields during the evolution towards planetary nebulae

Published online by Cambridge University Press:  30 August 2012

Wouter Vlemmings*
Affiliation:
Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992, Onsala, Sweden email: wouter.vlemmings@chalmers.se
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic fields appear ubiquitous throughout the envelopes of evolved stars. However, their origin and role in the formation of planetary nebulae is still unclear. As observations of magnetic fields are complicated and time consuming, the observed samples of AGB and post-AGB stars and planetary nebulae are still small. Still, magnetic energy seems to dominate the energy budget out to a distance of several tens of AU from the central star and the field morphology often appears to be well ordered. A short summary is given of the current observations and the potential of new instruments such as ALMA is discussed.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Amiri, N., Vlemmings, W., & van Langevelde, H. J. 2011, A&A, 532, A149 Google Scholar
Bains, I., Gledhill, T. M., Yates, J. A., & Richards, A. M. S. 2003, MNRAS, 338, 287 CrossRefGoogle Scholar
Bujarrabal, V., Castro-Carrizo, A., Alcolea, J. & Sánchez Contreras, C. 2001, A&A, 377, 868 Google Scholar
Herpin, F., Baudry, A., Thum, C., Morris, D., & Wiesemeyer, H. 2006, A&A, 450, 667 Google Scholar
Herpin, F., Baudy, A., Josselin, E., Thum, C., & Wiesemeyer, H. 2009, in IAU Symposium, vol. 259 of IAU Symposium, 47CrossRefGoogle Scholar
Kemball, A. J., Diamond, P. J., Gonidakis, I., Mitra, M., Yim, K., Pan, K., & Chiang, H. 2009, ApJ, 698, 1721 CrossRefGoogle Scholar
Kwok, S., Purton, C. R., & Fitzgerald, P. M. 1978, ApJ, 219, L125 CrossRefGoogle Scholar
Miranda, L. F., Gómez, Y., Anglada, G., & Torrelles, J. M. 2001, Nature, 414, 284 CrossRefGoogle Scholar
Nordhaus, J., Blackman, E. G., & Frank, A. 2007, MNRAS, 376, 599 CrossRefGoogle Scholar
Pérez-Sánchez, A. F., Vlemmings, W. H. T., & Chapman, J. M. 2011, MNRAS in press, arXiv:1108.1911Google Scholar
Rudnitski, G. M., Pashchenko, M. I., & Colom, P. 2010, Astron. Rep., 54, 400 CrossRefGoogle Scholar
Sabin, L., Zijlstra, A. A., & Greaves, J. S. 2007, MNRAS, 376, 378 CrossRefGoogle Scholar
Vlemmings, W. H. T. 2007, in IAU Symposium, edited by Chapman, J. M. & Baan, W. A., vol. 242 of IAU Symposium, 37CrossRefGoogle Scholar
Vlemmings, W. H. T., Diamond, P. J., & Imai, H. 2006, Nature, 440, 58 CrossRefGoogle Scholar
Vlemmings, W. H. T., Diamond, P. J., & van Langevelde, H. J. 2002, A&A, 394, 589 Google Scholar
Vlemmings, W. H. T., van Langevelde, H. J., & Diamond, P. J. 2005, A&A, 434, 1029 Google Scholar