Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-26T20:10:40.068Z Has data issue: false hasContentIssue false

Dynamical modeling and the interactions with the ISM

Published online by Cambridge University Press:  30 August 2012

Wolfgang Steffen*
Affiliation:
Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, Mexico email: wsteffen@astrosen.unam.mx
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This paper is a review of some of the recent modeling efforts to improve our understanding of structure formation and evolution of planetary nebulae including their interaction with the interstellar medium. New propositions have been made for the formation mechanism of multi-polar PNe and PPNe. These mechanisms are based on the central engine with interacting binary stars or hole producing instabilities in expanding shock waves leading to illumination effects from the central star that change the appearance of the nebula. Furthermore, there has been a lot of progress in the observation and 3D modeling of the kinematics, which is key to the understanding of the dynamics. Extensive observational catalogs are coming online for the kinematics, as well as some very detailed proper motion measurements have been made. New techniques for morpho–kinematic 3D modeling help to make the interpretation of kinematic data more reliable and detailed. In addition to individual pointed observations, new surveys have lead to the discovery of many PNe that show clear signs of interaction with the interstellar medium. Systematic hydrodynamic models of the interaction have produced a general scheme for the observed structure that results from the interaction of an evolving planetary nebula with the ISM. Detailed modeling of the dust-gas dynamics during the interaction with the ISM have produced interesting predictions for future IR observations. Detailed models were worked out for the structure of the bowshock and tail of Mira that was recently discovered in the UV.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Aaquist, O. B. & Kwok, S. 1996, ApJ, 462, 813 CrossRefGoogle Scholar
Akashi, M. & Soker, N. 2008, MNRAS, 391, 1063 CrossRefGoogle Scholar
Akashi, M., Meiron, Y., & Soker, N. 2008, New Astronomy, 13, 563 CrossRefGoogle Scholar
Balick, B. 1987, AJ, 94, 671 CrossRefGoogle Scholar
Dennis, T. J., Cunningham, A. J., Frank, A., Balick, B., Blackman, E. G., & Mitran, S. 2008, ApJ, 679, 1327 CrossRefGoogle Scholar
Esquivel, A., Raga, A. C., Cantó, J., et al. 2010, ApJ, 725, 1466 CrossRefGoogle Scholar
García–Segura, G. & López, J. A. 2000, ApJ, 544, 336 CrossRefGoogle Scholar
García–Segura, G. 2011, A&A, 520, L5 Google Scholar
Guerrero, M. A., Miranda, L. F., Riera, A., Velázquez, P. F., et al. 2008, ApJ, 683, 272 CrossRefGoogle Scholar
Hajian, A. R., Movit, S. M., Trofimov, D., Balick, B., et al. 2007, ApJ, 169, 289 Google Scholar
Kahn, F. D. & West, K. A. 1985, MNRAS, 212, 837 CrossRefGoogle Scholar
Kwok, S., Purton, C. R., & FitzGerald, P. M. 1978, ApJ 219 L125L127 CrossRefGoogle Scholar
Kwok, S. 2010, PASA, 27, 174 CrossRefGoogle Scholar
Li, J., Harrington, J. P., & Borkowski, K., 2002, AJ, 123, 2676 CrossRefGoogle Scholar
Martin, D. C., Seibert, M., Neill, J. D., et al. 2007, Nature, 448, 780 CrossRefGoogle Scholar
Mellema, G., Euldernick, F., & Icke, V. 1991, A&A, 252, 718 Google Scholar
Mellema, G. 2004, A&A, 416, 623 Google Scholar
Monteiro, H. & Falçeta–Gonçalves, D. 2011, ApJ, 738, 174 CrossRefGoogle Scholar
Parker, Q. A., Acker, A., Frew, D. J., et al. 2006, MNRAS, 373, 79 CrossRefGoogle Scholar
Raga, A. C., Cantó, 2008, ApJ, 685, 141 CrossRefGoogle Scholar
Raga, A. C., Cantó, , de Colle, J., et al. 2008, ApJ, 680, 45 CrossRefGoogle Scholar
Raga, A. C., Esquivel, A., Riera, A., & Velázquez, P. F. 2007, ApJ, 668, 1141 CrossRefGoogle Scholar
Raga, A. C., Riera, A., Mellema, G., Esquivel, A., & Velázquez, P. F. 2008, A&J, 489, 1141 Google Scholar
Ransom, R. R., Uyaniker, B., Kothes, R., & Landecker, T. L. 2008, A&J, 684, 1009 Google Scholar
Sabbadin, F., Turatto, M., Cappellaro, E., Benetti, S., & Ragazzoni, R. 2004, A&A, 416, 955 Google Scholar
Sabin, L., Zijlstra, A. A., Wareing, C., et al. 2010, PASA, 27, 166 CrossRefGoogle Scholar
Sahai, R. 2000, ApJ, 537, L43 CrossRefGoogle Scholar
Sahai, R. & Trauger, J. T. 1998, AJ, 116, 1357 CrossRefGoogle Scholar
Schönberner, D., Jacob, R., Sandin, C., & Steffen, M. 2010, A&A, 523, A86 Google Scholar
Steffen, M., Schönberner, D., & Warmuth, A. 2008, A&A, 489, 173 Google Scholar
Steffen, W. & López, J. A. 2006, RevMexAA, 42, 99 Google Scholar
Steffen, W. & Koning, N., 2011, AJ, 141, A76 CrossRefGoogle Scholar
Steffen, W., Koning, N., Wenger, S., Morisset, C., & Magnor, M., 2011, IEEE Transactions on Visualization and Computer Graphics, vol. 17 no. 4, pp. 454 CrossRefGoogle Scholar
Steffen, W., García–Segura, G., & Koning, N., 2009, ApJ, 691, 696 CrossRefGoogle Scholar
Szyszka, C., Zijlstra, A. A., & Walsh, J. R., 2011, MNRAS, 416, 715 Google Scholar
Trammell, S. R. & Goodrich, R. W. 2002, ApJ, 579, 688 CrossRefGoogle Scholar
Ueta, T., Uzumiura, H., Yamamura, I., et al. 2009, AKARI, a Light to Illuminate the Misty Universe, ASP Conf. S., 418, 117 Google Scholar
van Marle, A. J., Meliani, Z., Keppens, R., & Decin, L. 2011, ApJ, 734, 26 CrossRefGoogle Scholar
Velázquez, P. F., Gómez, Y., Esquivel, A., & Raga, A. C. 2007, MNRAS, 382, 1965 CrossRefGoogle Scholar
Velázquez, P. F., Steffen, W., Raga, A. C., Haro–Corzo, S., Esquivel, A., Cantó, J., & Riera, A. 2011, ApJ, 734, 57 CrossRefGoogle Scholar
Villaver, E., García–Segura, G., & Manchado, A. 2003, ApJ, 585, L49 CrossRefGoogle Scholar
Villaver, E. & Stanghellini, L. 2005, ApJ, 632, 854 CrossRefGoogle Scholar
Wareing, C. J., Zijlstra, A. A., O'Brien, T. J., & Seibert, M. 2007a, ApJ, 670, 125 CrossRefGoogle Scholar
Wareing, C. J., Zijlstra, A. A., & O'Brien, T. J. 2007b, MNRAS, 382, 1233 CrossRefGoogle Scholar