Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T06:59:08.671Z Has data issue: false hasContentIssue false

The Flavours of SN II Light Curves

Published online by Cambridge University Press:  05 September 2012

Iair Arcavi*
Affiliation:
Department of Particle Physics and Astrophysics, The Weizmann Institute of Science, Rehovot 76100, Israel email: iair.arcavi@weizmann.ac.il
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We present R-Band light curves of Type II supernovae (SNe) from the Caltech Core Collapse Program (CCCP). With the exception of interacting (Type IIn) SNe and rare events with long rise times, we find that most light curve shapes belong to one of three distinct classes: plateau, slowly declining and rapidly declining events. The latter class is composed solely of Type IIb SNe which present similar light curve shapes to those of SNe Ib, suggesting, perhaps, similar progenitor channels. We do not find any intermediate light curves, implying that these subclasses are unlikely to reflect variance of continuous parameters, but rather might result from physically distinct progenitor systems, strengthening the suggestion of a binary origin for at least some stripped SNe. We find a large plateau luminosity range for SNe IIP, while the plateau lengths seem rather uniform at approximately 100 days. We present also host galaxy trends from the Palomar Transien Factory (PTF) core collapse SN sample, which augment some of the photometric results.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Arcavi, I., Gal-Yam, A., Yaron, O., et al. 2011, ApJL, 742, L18CrossRefGoogle Scholar
Crockett, R. M., Eldridge, J. J., Smartt, S. J., et al. 2008, MNRAS, 391, L5CrossRefGoogle Scholar
Drout, M. R., Soderberg, A. M., Gal-Yam, A., et al. 2011, ApJ, 741, 97CrossRefGoogle Scholar
Filippenko, A. V. 1997, ARA&A, 35, 309Google Scholar
Fraser, M., Takáts, K., Pastorello, A., et al. 2010, ApJL, 714, L280CrossRefGoogle Scholar
Gal-Yam, A., Maoz, D., Guhathakurta, P., & Filippenko, A. V. 2008a, ApJ, 680, 550CrossRefGoogle Scholar
Gal-Yam, A., Bufano, F., Barlow, T. A., et al. 2008b, ApJL, 685, L117CrossRefGoogle Scholar
Hamuy, M., Folatelli, G., Morrell, N. I., et al. 2006, PASP, 118, 2Google Scholar
Kasen, D. & Bildsten, L. 2010, ApJ, 717, 245CrossRefGoogle Scholar
Kasen, D. & Woosley, S. E. 2009, ApJ, 703, 2205CrossRefGoogle Scholar
Kiewe, M., Gal-Yam, A., Arcavi, I., et al. 2012, ApJ, 744, 10CrossRefGoogle Scholar
Kleiser, I. K. W., Poznanski, D., Kasen, D., et al. 2011, MNRAS, 415, 372CrossRefGoogle Scholar
Law, N. M., Kulkarni, S. R., Dekany, R. G., et al. 2009, PASP, 121, 1395Google Scholar
Leonard, D. C., Filippenko, A. V., Gates, E. L., et al. 2002, PASP, 114, 35CrossRefGoogle Scholar
Maund, J. R., Smartt, S. J., Kudritzki, R. P., Podsiadlowski, P., & Gilmore, G. F. 2004, Nature, 427, 129CrossRefGoogle Scholar
Pastorello, A., Zampieri, L., Turatto, M., et al. 2004, MNRAS, 347, 74Google Scholar
Pastorello, A., Valenti, S., Zampieri, L., et al. 2009, MNRAS, 394, 2266Google Scholar
Pastorello, A., Pumo, M. L., Navasardyan, H., et al. 2012, A&A, 537, A141Google Scholar
Popov, D. V. 1993, ApJ, 414, 712Google Scholar
Rau, A., Kulkarni, S. R., Law, N. M., et al. 2009, PASP, 121, 1334Google Scholar
Richmond, M. W., Treffers, R. R., Filippenko, A. V., et al. 1994, AJ, 107, 1022Google Scholar
Smartt, S. J. 2009, ARA&A, 47, 63Google Scholar
Tremonti, C. A., Heckman, T. M., Kauffmann, G., et al. 2004, ApJ, 613, 898Google Scholar
Van Dyk, S. D., Li, W., Cenko, S. B., et al. 2011, ApJL, 741, L28CrossRefGoogle Scholar