Hostname: page-component-7c8c6479df-94d59 Total loading time: 0 Render date: 2024-03-29T10:04:10.519Z Has data issue: false hasContentIssue false

Effects of Non-Solar Abundance Ratios on Star Spectra: Observations versus Models

Published online by Cambridge University Press:  17 August 2012

Anne E. Sansom
Affiliation:
Jeremiah Horrocks Institute, University of Central Lancashire, Preston, Lancs PR1 2HE, UK email: aesansom@uclan.ac.uk
André de Castro Milone
Affiliation:
Divisão de Astrofísica, Instituto Nacional de Pesquisas Espaciais, Av. dos Astronautas 1758, São José dos Campos, SP 12227-010, Brazil
Alexandre Vazdekis
Affiliation:
Instituto de Astrofísica de Canarias, La Laguna, E-38200 Tenerife, Spain
Patricia Sánchez-Blázquez
Affiliation:
Departamento de Física Teórica, Universidad Autónoma de Madrid, 28409, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Element abundance ratios hold important clues to understanding the evolution of stellar populations, through the varying timescales of different nucleosynthetic contributors. Newly measured and compiled [Mg/Fe] ratios in the MILES stellar library are used to confront models of star spectra. Such models have been used in recent years to provide estimates of differential changes in spectral line strengths, due to enhancements in [α/Fe]. In this paper we test one widely used set of theoretical element response functions. Using magnesium as a proxy for all alpha elements we test the reliability of these theoretical response functions against empirical observations, and thus the reliability of current methods of measuring element abundance ratios in the stellar populations.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Annibali, F., Grützbauch, R., Rampazzo, R., et al. 2011, A&A, 528, 19Google Scholar
Bensby, T., Feltzing, S., & Lundström, I. 2004, A&A, 415, 155Google Scholar
Cassisi, S., Salaris, M., Castelli, F., & Pietrinferni, A. 2004, ApJ, 616, 498CrossRefGoogle Scholar
Coelho, P., Bruzual, G., Charlot, S., et al. 2007, MNRAS, 382, 498CrossRefGoogle Scholar
Korn, A. J., Maraston, C., & Thomas, D. 2005, A&A, 438, 685Google Scholar
Milone, A. de C., Sansom, A. E., & Sánchez-Blázquez, P. 2011, MNRAS, 414, 1227CrossRefGoogle Scholar
Sánchez-Blázquez, P., Peletier, R. F., Jiménez-Vicente, J., et al. 2006, MNRAS, 371, 703Google Scholar
Sansom, A. E. & Northeast, M. S. 2008, MNRAS, 387, 331Google Scholar
Thomas, D., Johansson, J., & Maraston, C. 2011, MNRAS, 412, 2199CrossRefGoogle Scholar