Hostname: page-component-7c8c6479df-hgkh8 Total loading time: 0 Render date: 2024-03-29T09:25:17.567Z Has data issue: false hasContentIssue false

Long term relation between solar activity and surface temperature at different geographical regions

Published online by Cambridge University Press:  05 July 2012

M. P. Souza-Echer
Affiliation:
National Institute for Space Research (INPE)S. J. Campos, SP, Brazil email: mariza@dge.inpe.br
W. D. Gonzalez
Affiliation:
National Institute for Space Research (INPE)S. J. Campos, SP, Brazil email: mariza@dge.inpe.br
E. Echer
Affiliation:
National Institute for Space Research (INPE)S. J. Campos, SP, Brazil email: mariza@dge.inpe.br
D. J. R. Nordemann
Affiliation:
National Institute for Space Research (INPE)S. J. Campos, SP, Brazil email: mariza@dge.inpe.br
N. R. Rigozo
Affiliation:
CRS, Santa Maria, RS, Brazil email: rigozo@lacesm.ufsm.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Global suface temperature has showed a rise trend in the last 150 years. This has been mainly attributed to the anthropogenic induced grenhouse gases emissions. However, the role of natural processes is not completely understood and should not be underestimated. In this work, we compare the long term variability of solar activity (as quantified by the sunspot number) with several surface temperature series from different geographical regions (global, hemispheric and latitudinal ranges). The interval of analysis is 1880-2005. The data are analyzed with wavelet multiresolution technique. It has been found that the solar activity long term trend has a maximum around 1970, while air surface temperature series showed maximum (still rising) at 2005. There are differences in the long term trend for Northern and Southern hemispheres. These differences and the relation with solar activity are discussed in this work.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Echer, E., Gonzalez, W. D., Guarnieri, F. L., Dal Lago, A., & Vieira, L. E. A. 2005, Adv. Space Sci., 35, 855CrossRefGoogle Scholar
Eddy, J. A. 1976, Science, 192, 1189CrossRefGoogle Scholar
Haigh, J. D. 2007, Liv. Rev. Sol. Phys., 4Google Scholar
Hansen, J. & Lebedeff, S. 1988, Geophys. Res. Lett., 15, 323CrossRefGoogle Scholar
Hansen, J., Ruedy, R., Sato, M., & Reynolds, R. 1996, Geophys. Res. Lett., 23, 1665CrossRefGoogle Scholar
Hansen, J., Ruedy, R., Glascoe, J., & Sato, M. 1999, J. Geophys. Res., 104, 30997Google Scholar
Hathaway, D. H. 2010, Liv. Rev. Solar Phys., 7Google Scholar
Hoyt, D. V. & Schatten, K. H. 1997, The Role of the Sun in climate change (Oxford University Press)CrossRefGoogle Scholar
Kumar, P. & Foufoula-Georgiou, E. 1997, Rev. Geophys., 35, 385CrossRefGoogle Scholar
Percival, D. B. & Walden, A. T. 2000, Wavelet methods for time series analysis (Cambridge University Press)CrossRefGoogle Scholar
Scafetta, N. 2010, J. Atmos. Solar-Terr. Phys., 72, 951CrossRefGoogle Scholar
Souza-Echer, M. P., Echer, E., Nordemann, D. J. R., Rigozo, N. R., & Prestes, A. 2008, Climatic Change, 87, 489CrossRefGoogle Scholar
Souza-Echer, M. P., Nordemann, D. J. R., Echer, E., & Rigozo, N. R. 2009, J. Atmos. Solar-Terr. Phys., 71, 41CrossRefGoogle Scholar
Souza-Echer, M. P., Echer, E., Rigozo, N. R., Brum, C. G. M., Nordemann, D. J. R., & Gonzalez, W. D 2012, J. Atmos. Solar-Terr. Phys., 74, 87CrossRefGoogle Scholar
Torrence, C. & Compo, G. P. 1998, Bull. American. Meteorol. Soc., 79, 612.0.CO;2>CrossRefGoogle Scholar