Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T00:20:42.729Z Has data issue: false hasContentIssue false

Flares and habitability

Published online by Cambridge University Press:  05 July 2012

Ximena C. Abrevaya
Affiliation:
Instituto de Astronomía y Física del Espacio, UBA - CONICET Pabellón IAFE, Buenos Aires, Argentina email: abrevaya@iafe.uba.ar Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires, Argentina
Eduardo Cortón
Affiliation:
Depto. de Química Biológica, FCEyN, UBA Pabellón 2, Ciudad Universitaria, Buenos Aires, Argentina Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires, Argentina
Pablo J. D. Mauas
Affiliation:
Instituto de Astronomía y Física del Espacio, UBA - CONICET Pabellón IAFE, Buenos Aires, Argentina email: abrevaya@iafe.uba.ar Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos Aires, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

At present, dwarf M stars are being considered as potential hosts for habitable planets. However, an important fraction of these stars are flare stars, which among other kind of radiation, emit large amounts of UV radiation during flares, and it is unknown how this events can affect life, since biological systems are particularly vulnerable to UV. In this work we evaluate a well known dMe star, EV Lacertae (GJ 873) as a potential host for the emergence and evolution of life, focusing on the effects of the UV emission associated with flare activity. Since UV-C is particularly harmful for living organisms, we studied the effect of UV-C radiation on halophile archaea cultures. The halophile archaea or haloarchaea are extremophile microorganisms, which inhabit in hypersaline environments and which show several mechanisms to cope with UV radiation since they are naturally exposed to intense solar UV radiation on Earth. To select the irradiance to be tested, we considered a moderate flare on this star. We obtained the mean value for the UV-C irradiance integrating the IUE spectrum in the impulsive phase, and considering a hypothetical planet in the center of the liquid water habitability zone. To select the irradiation times we took the most frequent duration of flares on this star which is from 9 to 27 minutes. Our results show that even after considerable UV damage, the haloarchaeal cells survive at the tested doses, showing that this kind of life could survive in a relatively hostile UV environment.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Abrevaya, X. C., Paulino-Lima, I. G., Galante, D., Rodrigues, F., Cortón, E., Mauas, P. J. D., & de Alencar Santos Lage, C. 2011, Astrobiology, 10, 1034CrossRefGoogle Scholar
Buccino, A. P., Lemarchand, G. A., & Mauas, P. J. D. 2006, Icarus, 183, 491CrossRefGoogle Scholar
Buccino, A. P., Lemarchand, G. A., & Mauas, P. J. D. 2007, Icarus, 192, 582CrossRefGoogle Scholar
Cadet, J., Sage, E., & Douki, T. 2005, Mutat. Res., 571, 3CrossRefGoogle Scholar
Cavicchioli, R. 2005, Astrobiology, 2, 281CrossRefGoogle Scholar
Cockell, C. S. 2007, in: Horneck, G. & Rettberg, P. (eds.), Complete course in Astrobiology (Wiley-VCH), pp. 151177CrossRefGoogle Scholar
DasSarma, S. 2006, Microbe, 1, 120Google Scholar
Dole, S. H. 1964, in: Habitable Planets for Man (Blaisdell Pub. Co., 1st ed., New York)Google Scholar
Gershberg, R. E. 2005, in: Solar-Type Activity in Main-Sequence Stars (Springer, Heidelberg, The Netherlands)Google Scholar
Huang, S. S. 1959, Am. Sci., 47, 397Google Scholar
Hart, M. H. 1979, Icarus, 37, 351CrossRefGoogle Scholar
Mitchell, D. L. & Nairn, R. S. 1989, Photochem. Photobiol., 49, 805CrossRefGoogle Scholar