Hostname: page-component-7c8c6479df-fqc5m Total loading time: 0 Render date: 2024-03-29T01:24:13.256Z Has data issue: false hasContentIssue false

Earth–directed coronal mass ejections and their geoeffectiveness during the 2007–2010 interval

Published online by Cambridge University Press:  05 July 2012

Constantin Oprea
Affiliation:
Institute of Geodynamics of the Romanian Academy, RO–020032, Bucharest, Romania email: const_oprea@yahoo.com
Marilena Mierla
Affiliation:
Institute of Geodynamics of the Romanian Academy, RO–020032, Bucharest, Romania email: const_oprea@yahoo.com Royal Observatory of Belgium, Brussels, Belgium Research Centre for Atomic Physics and Astrophysics, Faculty of Physics, University of Bucharest, Romania
Georgeta Maris
Affiliation:
Institute of Geodynamics of the Romanian Academy, RO–020032, Bucharest, Romania email: const_oprea@yahoo.com
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this study we analyse the coronal mass ejections (CMEs) directed towards the Earth during the interval 2007–2010, using the data acquired by STEREO mission and those provided by SOHO, ACE and geomagnetic stations. A study of CMEs kinematics is performed. This is correlated with CMEs interplanetary manifestations and their geomagnetic effects, along with the energy transfer flux into magnetosphere (the Akasofu coupling function). The chosen interval that is practically coincident with the last solar minimum, offered us a good opportunity to link and analyse the chain of phenomena from the Sun to the terrestrial magnetosphere in an attempt to better understand the solar and heliospheric processes that can cause major geomagnetic storms.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Akasofu, S.-I., 1983, Space Sci. Revs, 34, 173CrossRefGoogle Scholar
Brueckner, G. E., Howard, R. A., Koomen, M. J. et al. , 1995, Solar Phys., 162, 357CrossRefGoogle Scholar
De Lucas, A., Gonzalez, W. D., Echer, E. et al. , 2007, Jour. Atmosph. and Solar-Terres. Phys., 69, 1851CrossRefGoogle Scholar
Echer, E., Gonzalez, W. D., Tsurutani, B. T. & Gonzalez, A. L. C. 2008, Jour. Geophys. Res., 113, A05221Google Scholar
Gopalswamy, N., Yashiro, S., & Akiyama, S. 2007, Jour. Geophys. Res., 112, A06112CrossRefGoogle Scholar
Howard, R. A., Moses, J. D., Vourlidas, A. et al. , 2008, Space Sci. Rev. 136, 67CrossRefGoogle Scholar
Kilpua, E. K. J., Mierla, M., Rodriguez, L., Zhukov, A. N., Srivastava, N., West, M., 2012, Sol. Phys., in pressGoogle Scholar
Liu, Y., Davies, J. A., Luhmann, J. G., Vourlidas, A., Bale, S. D., & Lin, R. P. 2010, Astrophys. J. (Letters), 710, L82CrossRefGoogle Scholar
Maris, G. & Maris, O. 2010, Highlights of Astronomy, 15, 494Google Scholar
Mustajab, F. & Badruddin, 2011, Astrophys. Space Sci., 331, 91CrossRefGoogle Scholar
Srivastava, N. & Venkatakrishnan, P. 2004, Jour. Geophys. Res., 109, A10103CrossRefGoogle Scholar
Thernisien, A., Vourlidas, A., & Howard, R. A. 2009, Solar Phys., 256, 111CrossRefGoogle Scholar
Zhang, J., Richardson, I. G., Webb, D. F. et al. . 2007, Jour. Geophys. Res., 112, A10102Google Scholar