Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T21:01:46.920Z Has data issue: false hasContentIssue false

Extremely low geomagnetic activity during the recent deep solar cycle minimum

Published online by Cambridge University Press:  05 July 2012

E. Echer
Affiliation:
National Institute for Space Research (INPE), S. J. Campos, SP, Brazil email: ezequiel.echer@gmail.com, gonzalez@dge.inpe.br
B. T. Tsurutani
Affiliation:
Jet Propulsion Laboratory(JPL), California Institute of Technology (CALTECH)Pasadena, CA, USA email: bruce.tsurutani@jpl.nasa.gov
W. D. Gonzalez
Affiliation:
National Institute for Space Research (INPE), S. J. Campos, SP, Brazil email: ezequiel.echer@gmail.com, gonzalez@dge.inpe.br
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The recent solar minimum (2008-2009) was extreme in several aspects: the sunspot number, Rz, interplanetary magnetic field (IMF) magnitude Bo and solar wind speed Vsw were the lowest during the space era. Furthermore, the variance of the IMF southward Bz component was low. As a consequence of these exceedingly low solar wind parameters, there was a minimum in the energy transfer from solar wind to the magnetosphere, and the geomagnetic activity ap index reached extremely low levels. The minimum in geomagnetic activity was delayed in relation to sunspot cycle minimum. We compare the solar wind and geomagnetic activity observed in this recent minimum with previous solar cycle values during the space era (1964-2010). Moreover, the geomagnetic activity conditions during the current minimum are compared with long term variability during the period of available geomagnetic observations. The extremely low geomagnetic activity observed in this solar minimum was previously recorded only at the end of XIX century and at the beginning of the XX century, and this might be related to the Gleissberg (80-100 years) solar cycle.

Type
Contributed Papers
Copyright
Copyright © International Astronomical Union 2012

References

Bartels, J. 1950, J. Geophys. Res., 55, 427Google Scholar
de Toma, G. 2011, Solar Phys., 274, 195Google Scholar
Echer, E., Gonzalez, W. D., Gonzalez, A. L. C., Prestes, A., Vieira, L. E. A., Dal Lago, A., Guarnieri, F. L., & Schuch, N. J. 2004, J. Atmos. Solar-Terr. Phys., 66, 1019Google Scholar
Echer, E., Gonzalez, W. D., Guarnieri, F. L., Dal Lago, A., & Vieira, L. E. A. 2005, Adv. Space Sci., 35, 855CrossRefGoogle Scholar
Echer, E., Tsurutani, B. T., Gonzalez, W. D., & Kozyra, J. U. 2011, Sol. Phys., 274, 303Google Scholar
Eddy, J. A. 1976, Science, 192, 1189Google Scholar
Emery, B. A., Richardson, I. G., Evans, D. S., Rich, F. J., & Wilson, G. R. 2011, Solar Phys., 274, 399CrossRefGoogle Scholar
Fröhlich, C. 2009, Astron. Astrophys., 501, L27Google Scholar
Gao, M. 1986, in: Kamide, Y. & Slavin, J. A. (eds.), Solar-Wind Magnetosphere Coupling, (Astrophysics and Space Science Library, 126), p. 149CrossRefGoogle Scholar
Gibson, S. E., Kozyra, J. U., de Toma, G., Emery, B. A., Onsager, T., & Thompson, B. J. 2009, J. Geophys. Res., 114Google Scholar
Gonzalez, W. D., Gonzalez, A. L. C., & Tsurutani, B. T. 1990, Planet. Space Sci., 38, 181Google Scholar
Gonzalez, W. D., Joselyn, J. A., Kamide, Y., Kroehl, H. W., Rostoker, G., Tsurutani, B. T., & Vasyliunas, V. M. 1994, J. Geophys. Res., 99, 5771Google Scholar
Gonzalez, W. D., Echer, E., Tsurutani, B. T., Clua de Gonzalez, A. L., & Dal Lago, A. 2011 Space Sci. Rev., 158, 69Google Scholar
Hathaway, D. H. 2010, Liv. Rev. Solar Phys., 7, 1CrossRefGoogle Scholar
Heber, B., Kopp, A., Gieseler, J., Muller-Mellin, R., Fichtner, H., Scherer, K., Potgieter, M. S., & Ferreira, S. E. S. 2009, Astrophys. J., 699, 1956Google Scholar
Kane, R. P. 2002, Ann. Geophys., 20, 1519CrossRefGoogle Scholar
Kataoka, R. & Miyoshi, Y. 2010, Space Weather, 8, 1Google Scholar
Kirk, M. S., Pesnell, W. D., Young, C. A., & Hess Webber, S. A. 2009, Sol. Phys., 257, 99Google Scholar
Luhmann, J. G., Lee, C. O., Li, Y., Arge, C. N., Galvin, A. B., Simunac, K., Russell, C. T., Howard, R. A., & Petrie, G. 2009, Solar Phys., 256, 285CrossRefGoogle Scholar
McComas, D. J., Ebert, R. W., Elliott, H. A., Goldstein, B. E., Gosling, J. T., Schwadron, N. A., & Skoug, R. M. 2008, Geophys. Res. Lett., 35, L18103Google Scholar
Minamoto, Y. & Taguchi, Y. 2009, Earth Planets Space, 61, e25Google Scholar
Perreault, P. & Akasouf, S.-I., 1978, Geophys. J. Royal Astron. Soc., 54, 547Google Scholar
Ram, S. T., Liu, C. H., & Su, S.-Y., 2010, J. Geophys. Res., 115, A12340Google Scholar
Richardson, I. G. 2006, in: Tsurutani, B. T., McPherron, R., Gonzalez, W., Lu, G., Sobral, J. H. A. & Gopalswamy, N. (eds.), Recurrent Magnetic Storms: Corotating Solar Wind Streams (AGU Geophysical Monograph 167), p. 45Google Scholar
Rostoker, G. 1972, Rev. Geophys. Space Phys., 10, 935Google Scholar
Russell, C. T., Luhmann, J. G., & Jian, K. J. 2010, Rev. Geophys, 48, RG2004Google Scholar
Scherrer, P. H., Wilcox, J. M., Svalgaard, L., Duvall, T. L., Dittmer, H., & Gustafson, E. K. 1977, Solar Phys., 54, 353CrossRefGoogle Scholar
Smith, E. J. & Balogh, A. 2008, Geophys. Res. Lett., 35, L22103Google Scholar
Stamper, R., Lockwood, M., Wild, M. N., & Clark, T. D. G. 1999, J. Geophys. Res., 104, 28325CrossRefGoogle Scholar
Tsurutani, B. T., Smith, E. J., Pyle, K. R., & Simpson, J. A. 1982, J. Geophys. Res., 87, 7389Google Scholar
Tsurutani, B. T., Gonzalez, W. D., Gonzalez, A. L. C., Tang, F., Arballo, J. K., & Okada, M. 1995, J. Geophys. Res., 100, 21717CrossRefGoogle Scholar
Tsurutani, B. T., Echer, E., & Gonzalez, W. D. 2011, Ann. Geophys., 29, 83Google Scholar
Verkhoglyadova, O. P., Tsurutani, B. T., Mannucci, A. J., Mlynczak, M. G., Hunt, L. A., Komjathy, A., & Runge, T. 2011, J. Geophys. Res., 116, A09325Google Scholar
Wang, Y.-M., Robbrecht, E., & Sheeley, N. R. 2009, Astrophys. J., 707, 1372Google Scholar
Zirker, J. B. 1977, Rev. Geophys. Space Phys., 15, 257Google Scholar